Methods of internal standards’ preservation for genome size assessments: a comparative study

Authors

  • Màrius Mumbrú Laboratori de Botànica—Unitat Associada CSIC, Facultat de Farmàcia i Ciències de l’Alimentació—Institut de Recerca de la Biodiversitat IRBio, Universitat de Barcelona (UB), Av. Joan XXIII 27-31, 08028 Barcelona, Catalonia, Spain https://orcid.org/0009-0005-8699-3473
  • Teresa Garnatje Institut Botànic de Barcelona, IBB (CSIC-CMCNB), Passeig del Migdia s.n. 08038 Barcelona, Catalonia, Spain https://orcid.org/0000-0001-6295-6217
  • Joan Vallès Laboratori de Botànica—Unitat Associada CSIC, Facultat de Farmàcia i Ciències de l’Alimentació—Institut de Recerca de la Biodiversitat IRBio, Universitat de Barcelona (UB), Av. Joan XXIII 27-31, 08028 Barcelona, Catalonia, Spain https://orcid.org/0000-0002-1309-3942

DOI:

https://doi.org/10.36253/caryologia-3323

Keywords:

genome size, internal standards, lyophilisation, silica gel preservation, flow cytometry, freezing

Abstract

Assessing genome size in plant species using flow cytometry requires fresh plant material from both the target species and appropriate internal standards. The use of fresh material from the standards is sometimes difficult. For this reason, a research about three preservation methods and their results when using the plants in flow cytometry has been conducted. We have focused on four of the most used internal standards in flow cytometry to estimate the nuclear DNA amount. Our results pointed out that the best method of conservation was lyophilisation. The conservation method based on drying with silica gel is more advisable to establish the ploidy level than to provide an absolute value of nuclear DNA content. Finally, ultrafreezing is not an appropriate preservation method.

Downloads

Download data is not yet available.

References

Becher H, Powell RF, Brown MR, Metherell C, Pellicer J, Leitch IJ, Twyford AD. 2021. The nature of intraspecific and interspecific genome size variation in taxonomically complex eyebrights. Ann Bot. 128(5):639–651. https://doi.org/10.1093/aob/mcab102

Bourge M, Brown SC, Siljak-Yakovlev S. 2018. Flow cytometry as tool in plant sciences, with emphasis on genome size and ploidy level assessment. Genet App. 2(2):1–12. https://doi.org/10.31383/ga.vol2iss2pp1-12.

Boutte J, Maillet L, Chaussepied T, Letort S, Aury J-M, Belser C, Boideau F, Brunet A, Coriton O, Deniot G, et al. 2020. Genome Size Variation and Comparative Genomics Reveal Intraspecific Diversity in Brassica rapa. Front Plant Sci. 11:577536. https://doi.org/10.3389/fpls.2020.577536

Čertner M, Lučanová M, Sliwinska E, Kolář F, Loureiro J. 2021. Plant material selection, collection, preservation, and storage for nuclear DNA content estimation. Cytometry Part A. 1–12. https://doi.org/10.1002/cyto.a.24482

Díez CM, Gaut BS, Meca E, Scheinvar E, Montes‐Hernandez S, Eguiarte LE, Tenaillon MI. 2013. Genome size variation in wild and cultivated maize along altitudinal gradients. New Phytol. 199(1):264–276.

Doležel J, Binarová P, Lucretti S. 1989. Analysis of nuclear DNA content in plant cells by flow cytometry. Biol Plantarum 31:113–120.

Doležel J, Bartoš J. 2005. Plant DNA Flow Cytometry and Estimation of Nuclear Genome Size. Ann Bot. 95(1):99–110. https://doi.org/10.1093/aob/mci005

Hare EE, Johnston JS. 2011. Genome size determination using flow cytometry of propidium iodide-stained nuclei. Methods Mol Biol. 772:3–12. https://doi.org/10.1007/978-1-61779-228-1_1

Jedrzejczyk I, Sliwinska E. 2010. Leaves and Seeds as Materials for Flow Cytometric Estimation of the Genome Size of 11 Rosaceae Woody Species Containing DNA-Staining Inhibitors. J Bot. 930895. https://doi.org/10.1155/2010/930895

Kolář F, Čertner M, Suda J, Schönswetter P, Husband BC. 2017. Mixed-ploidy species: progress and opportunities in polyploid research. Trends Plant Sci. 22(12):1041–1055.

Lumivero. 2023. XLSTAT statistical and data analysis solution. New York, USA. https://www.xlstat.com/es.

Marie D, Brown SC. 1993. A Cytometric Exercise in Plant DNA Histograms, with 2C-Values for 70 Species. Biol Cell. 78(1-2):41–51.

Pellicer J, Hidalgo O, Vallès J, Garnatje T. 2022. Sobre la necessitat d’estudiar trets genètics que influeixen en l’organització i l’estructura del genoma en projectes de seqüenciació de plantes. Treballs Soc Cat Biol. 72:10–15. https://raco.cat/index.php/TreballsSCBiologia/article/view/409868

Sliwinska E, Loureiro J, Leitch IJ, Šmarda P, Bainard J, Bureš P, Chumová, Z, Horová L, Koutecký P, Lučanová M, et al. 2021. Application‐based guidelines for best practices in plant flow cytometry, Cytometry Part A. 101(9):749–781. https://doi.org/10.1002/cyto.a.24499

Šmarda P, Bureš P. 2010. Understanding intraspecific variation in genome size in plants. Preslia 82(1):41–61.

Suda J, Trávníček P. 2006. Reliable DNA Ploidy Determination in Dehydrated Tissues of Vascular Plants by DAPI Flow Cytometry—New Prospects for Plant Research. Cytometry Part A. 69A: 273–280. https://doi.org/10.1002/cyto.a.20253

Suda J, Leitch IJ. 2010. The quest for suitable reference standards in genome size research. Cytometry Part A. 77: 717–720. https://doi.org/10.1002/cyto.a.20907.

Swift H. 1950. The constancy of desoxyribose nucleic acid in plant nuclei. Proc Nat Acad Sci USA 36:643–654.

Tang SK, Lee PH, Liou WT, Lin CH, Huang YM, Kuo LY. 2023. Fern Spores-“Ready-to-Use” Standards for Plant Genome Size Estimation Using a Flow Cytometric Approach. Pl ants 12(1):140. https://doi.org/10.3390/plants12010140

Temsch EM, Koutecký P, Urfus T, Šmarda P, Doležel J. 2022. Reference standards for flow cytometric estimation of absolute nuclear DNA content in plants. Cytometry Part A. 101:710–724. https://doi.org/10.1002/cyto.a.24495

Wakamiya I, Newton RJ, Johnston JS, Price HJ. 1993. Genome size and environmental factors in the genus Pinus. Amer J Bot 80:12351241. https://doi.org/10.1002/j.1537-2197.1993.tb15360.x

Wang G, Yang Y. 2016. The effects of fresh and rapid desiccated tissue on estimates of Ophiopogoneae genome size. Plant Div. 38: 190–193. https://doi.org/10.1016/j.pld.2016.08.001

Wang D, Zheng Z, Li Y et al. 2021. Which factors contribute most to genome size variation within angiosperms? Ecol Evol. 11:2660–2668. https://doi.org/10.1002/ece3.7222

Downloads

Published

2025-10-07

How to Cite

Mumbrú, M., Garnatje, T., & Vallès, J. (2025). Methods of internal standards’ preservation for genome size assessments: a comparative study. Caryologia, 78(1), 53–58. https://doi.org/10.36253/caryologia-3323

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.