Vol. 7 No. 2 (2023)
Historical Articles

The Mixed Blessings of Pragmatism. Jean-Baptiste Dumas and the (Al)chemical Quest for Metallic Transmutation

Leonardo Anatrini
Dipartimento di Lettere e Filosofia (DILEF) - Università degli Studi di Firenze, Italy
Bio
Jean-Baptiste-André Dumas. Lithograph by N. E. Maurin after himself.

Published 2023-07-03

Keywords

  • Transmutation,
  • Jean-Baptiste Dumas,
  • Ammonium,
  • Jöns Jacob Berzelius,
  • Cyprien-Théodore Tiffereau

How to Cite

Anatrini, L. (2023). The Mixed Blessings of Pragmatism. Jean-Baptiste Dumas and the (Al)chemical Quest for Metallic Transmutation. Substantia, 7(2), 121–136. https://doi.org/10.36253/Substantia-2169

Abstract

There were at least three prerequisites for the transmutability of metals to become once again a scientifically acceptable subject of research from the 1810s: new hypotheses concerning the mutual reducibility of certain elements, such as those of integer multiples and protyle put forward by the British chemist and physician William Prout; the experimental confirmation that chemical compounds with the same percentage composition could be substances with very different properties, i.e. the discovery of isomerism and allotropy; the comparison between metals and compound radicals of organic chemistry. This paper aims at illustrating how these premises were exploited by Jean-Baptiste Dumas, one of the leading French chemists of the 19th century, to reintroduce in the chemical discourse the alchemical topic of transmutation.

References

  1. W. H. Brock, From Protyle to Proton. William Prout and the Nature of Matter, 1785-1985, Adam Hilger Ltd., Bristol-Boston, 1985, pp. 83-84; M. P. Banchetti-Robino, in What Is a Chemical Element? A Collection of Essays by Chemists, Philosophers, Historians, and Educators (Eds. E. Scerri, M. Ghibaudi), Oxford University Press, Oxford-New York, 2020, pp. 87-108; B. Bensaude-Vincent, ivi, pp. 32-52.
  2. J.-B. Dumas, Annales de chimie et de physique, 1826, 33, 337-391; M. Chaigneau, J.-B. Dumas, chimiste et homme politique. Sa vie, son oeuvre: 1800-1884, Guy Le Prat, Paris, 1984, pp. 81-88; M. Novitski, Auguste Laurent and the Prehistory of Valence, Harwood Academic Publishers, Chur [etc.], 1992, pp. 15-16.
  3. A. Avogadro, Journal de physique, de chimie, d’histoire naturelle et des arts, 1811, 73, 58-76.
  4. A.-M. Ampère, Annales de chimie, ou recueil de mémoires concernant la chimie et les arts qui en dépendent, 1814, 90, 43-86.
  5. J. I. Solov’ev, Эволюция основных теоретических проблем химии, Наука, Москва, 1971, p. 128. Dumas certainly came to know the results of Berzelius’ research on the calculation of atomic weights - published both in the third volume of his Lärbok i kemien and in the fifth of the journal he founded together with Wilhelm Hisinger, 1766 - 1852 (Afhandlingar i fysik, kemi och mineralogi) - through their French edition, the publication of which was supervised by the author himself; J. J. Berzelius, Lärbok i kemien, Tryckt hos Direct. Henr. A. Nordström, Stockholm, 1808-18 (3 vols.), III (1818); Id., Essai sur la théorie des proportions chimique et sur l’influence chimique de l’électricité […], chez Méquignon-Marvis, libraire pour la partie de Médecine, rue de l’École de Médecine, n. 3, près celle de la Harpe, Paris, 1819.
  6. See ref. 5 (Berzelius 1808-18), III, pp. 104-130; E. M. Melhado, Jacob Berzelius: The Emergence of his Chemical System, Almqvist & Wiksell, Stockholm; University of Wisconsin Press, Madison (WI), 1981, pp. 270-278; G. Eriksson in Enlightenment Science in the Romantic Era: The Chemistry of Berzelius and its Cultural Setting (Eds.: E. M. Melhado, T. L. Frängsmyr), Cambridge University Press, Cambridge, 1992, pp. 56-84.
  7. W. Prout, Annals of Philosophy, 1815, 6, pp. 321-330; see ref. 1 (Brock), pp. 82-89.
  8. P. L. Dulong, A. T. Petit, Annales de chimie et de physique, 1819, 19, pp. 395-413; R. Fox, The British Journal for the History of Science, 1968, 4,1, pp. 1-22. To appreciate the degree of accuracy achieved by the two scientists in calculating the constant (equal to 6.2 cal/°C), it is only necessary to multiply the average of the values describing the heat capacity of the elements by the atomic weight unit derived from Berzelius’ data (O = 100) and divide it by the correct atomic weight of the same element (O = 15.9994). The result obtained is 6.004.
  9. E. Mitscherlich, Annales de chimie et de physique, 1820, 14, pp. 172-191; Id., Kongliga vetenskaps akademiens handlingar, 1821, 9, pp. 4-79; E. M. Melhado, Historical Studies in the Physical Sciences, 1980, 11,1, pp. 87-123; H.-W. Schütt, Eilhard Mitscherlich: Baumeister am Fundament der Chemie, Oldenbourg, München, 1992, pp. 81-90.
  10. On Berzelius’ application of Dulong-Petit law and isomorphism to the calculation of atomic weights, see J. W. van Spronsen, Chymia, 1967, 12, pp. 157-169; J. I. Solov’ev, V. I. Kurinnoi, Якоб Берцелиус: Жизнь и деятельность, Наука, Москва, 19802, pp. 78-83; H.-W. Schütt in ref. 6 (E. M. Melhado, T. L. Frängsmyr), pp. 171-179. Berzelius’ results were disseminated in France through a new translation of the Lärbok and a second edition of the 1819 monograph; cf. J. J. Berzelius, Traité de chimie minérale, végétale et animale, Firmin-Didot Frères, Libraires-Éditeurs, Paris, 1829-33 (8 vols.); Id., Théorie des proportions chimiques, et table synoptique des poids atomiques des corps simples et de leurs combinaisons les plus importantes, Firmin-Didot Frères, Libraires-Éditeurs, Paris, 1835.
  11. J.-B. Dumas, Dissertation sur la densité de la vapeur de quelques corps simples, Imprimerie de M.e V.e Thuau, Paris, 1832.
  12. See ref. 2 (Dumas), pp. 354-355.
  13. Ivi, p. 339; Id., Traité de chimie, appliquée aux arts, Chez Béchet jeune, Paris, 1828-46 (8 vols. and 1 atl.), I, pp. xxxviii-xxxix.
  14. See ref. 5 (Berzelius 1808-18), III, pp. 106-107. Cl = 221.325 (O = 100) → Cl = 69.164 instead of 35.453; weight of diatomic phosphorus contained in the molecule of phosphorus pentoxide (P2O5 but described as PO5 by then) = 196.15 → P = 61.71 instead of 30.973.
  15. M. G. Faershtein, История учения о молекуле в химии (До 1860 г.), Наука, Москва, 1961, pp. 70-88, 123-126.
  16. W. H. Wollaston, Philosophical Transactions of the Royal Society of London, 1814, 104, pp. 1-22; M. C. Usselman, Pure Intelligence: The Life of William Hyde Wollaston, The University of Chicago Press, Chicago, 2015, pp. 190-239.
  17. J. Petrel, La négation de l’atome dans la chimie du XIXème siècle: cas de Jean-Baptiste Dumas, Centre national de la recherche scientifique, Centre de documentation sciences humaines, Paris, 1979, pp. 19-29.
  18. M. A. Gaudin, Annales de chimie et de physique, 1833, 52, pp. 113-133; T. M. Cole, Isis, 1975, 66,3, pp. 334-360; see refs. 2 (Chaigneau), pp. 83-84, and 14 (Faershtein), pp. 88-98.
  19. See ref. 16 (Petrel); L. J. Klosterman, Annals of Science, 1985, 42,1, pp. 1-80: 73-80.
  20. Thomas Thomson, An Attempt to Establish the First Principles of Chemistry by Experiment, Printed for Baldwin, Craddock, and Joy, London, 1825 (2 vols.); Id., Principes de la chimie, établis par les expériences; ou essai sur les proportions définies dans la composition des corps […], Crevot, libraire-éditeur, rue de l’École de médecine, n. 3, près celle de la Harpe, Paris, 1825 (2 vols.); M. P. Crosland, in John Dalton and the Progress of Science (Ed.: D. S. L. Cardwell), Manchester University Press, Manchester, 1968, pp. 274-287.
  21. R. Keen, The Life and Work of Friedrich Wöhler (1800-1882), Traugott Bautz, Nordhausen, 2005, pp. 73-102; K. C. Nicolaou, Angewandte Chemie International Edition, 2013, 52,1, pp. 131-146.
  22. W. B. Jensen, Journal of Chemical Education, 2006, 83,6, pp. 838-839.
  23. W. Prout, Annals of Philosophy, 1816, 7, pp. 111-113; see ref. 1 (Brock), pp. 97-108.
  24. J.-B. Dumas, Leçons sur la philosophie chimique, Bechet jeune, Paris, 1837, pp. 30-32.
  25. J.-B. Dumas, Annales de chimie et de physique, 1834, 56, pp. 113-154; A. Dumon, R. Luft, Naissance de la chimie
  26. structurale, EDP Sciences, Les Ulis, 2008, pp. 31-38.
  27. See ref. 23 (Dumas), pp. 316-320.
  28. Ivi, p. 267.
  29. R. Siegfried, Isis, 1963, 54,2, pp. 147-158.
  30. J. J. Berzelius, M. M de Pontin, Economiska Annaler med Kongl. Maj:ts Nådigste Tillstånd utgisna af Kongl. Vetenskaps-Academien, 1808, 6 (May), pp. 110-130; 6 (June), pp. 113-118 (maxime pp. 122-130); see ref. 9 (Solov’ev, Kurinnoi), pp. 59-63; see ref. 6 (Melhado), pp. 203-210.
  31. The curious amalgam was independently discovered and similarly described during the same year by Thomas Johann Seebeck (1770 - 1831) and Johann Friedrich August Göttling (1753 - 1809); cf. T. J. Seebeck, Journal der Chemie, Physik und Mineralogie, 1808, 5, pp. 482-483; J. F. A. Göttling, Elementarbuch der chemischen Experimentirkunst, Bey H. Ch. W. Seidler, Jena, 1808-9 (2 vols.), I, pp. 247-249; J. R. Partington, A History of Chemistry, Macmillan, London, 1961-70 (4 vols.), IV, p. 48.
  32. See ref. 28 (Berzelius, de Pontin), p. 130.
  33. H. Davy, The Collected Works of Sir Humphry Davy, Bart. (Ed.: J. Davy), Smith, Elder and Co., Cornhill, London, 1839-40 (9 voll.), V, pp. 102-139 (Electro-Chemical Researches on the Decomposition of the Earths - 30 June 1808): 130-131.
  34. R. Siegfried, Chymia, 1964, 9, pp. 117-124.
  35. See ref. 5 (Berzelius 1808-18), II, pp. 48-65.
  36. Ivi, pp. v, 45-68.
  37. C.-L. Berthollet, Nouveau bulletin des sciences, par la Société Philomathique de Paris, 1808, 1, pp. 150-152; A.-M. Ampère, Annales de chimie et de physique, 1816, 2, pp. 5-32: 16. Joseph Louis Gay-Lussac (1778 1850) and Louis Jacques Thénard - Dumas’ mentor - for some time were even inclined to believe in the existence of a phlogistic principle whereby metals would be hydrogenated compounds: J. L. Lussac, L. J. Thénard, Annales de chimie, ou recueil de mémoires concernant la chimie et les arts qui en dépendent, 1808, 65, pp. 325-326; Idd., ivi, 1808, 66, pp. 205-217; Idd., ivi, 1810, 73, pp. 197-214.
  38. M. Bernal, J. M. Harrie, S. W. Massey, Monthly Notices of the Royal Astronomical Society, 1954, 114,2, pp. 172-179; D. J. Stevenson, Nature, 1975, 258,5532, pp. 222-223; A. Baranski, W. Lu, Electroanalytical Chemistry, 1993, 355,1/2, pp. 205-207. The solution to the problem required knowledge that would not be within the reach of physicochemical research for several decades yet. Moreover, the reasons behind the behaviour of ammonium remain largely to be clarified, after stabilisation of the metallic phase of the compound. So far, it has only been theorised and plausibly believed to exist under particular conditions of temperature and pressure, such as those hypothetically detectable in the cores of planets like Uranus and Neptune.
  39. See ref. 12 (Dumas), II, pp. 39-44; III, pp. 634-637; V. pp. 691-692.
  40. Ivi, II, p. 43.
  41. Ivi, V, p. 692.
  42. See ref. 2 (Chaigneau), pp. 96-102; J.-B. Dumas, F.-P. Boullay, Annales de chimie et de physique, 1827, 36, pp. 294-310; Idd., ivi, 1828, 37, pp. 15-53; U. Klein, Experiments, Models, Paper Tools: Cultures of Organic Chemistry in the Nineteenth Century, Stanford University Press, Stanford, 2003, pp. 118-129, 133-137.
  43. C.-A. Wurtz, Histoire des doctrines chimiques depuis Lavoisier jusqu'à nos jours, Librairie de L. Hachette et Cie, Boulevard Saint-Germain, n° 77, Paris, 1869, p. 77.
  44. See ref. 39 (Dumas, Boullay 1828), pp. 36-37.
  45. See ref. 34 (Ampère).
  46. See ref. 12 (Dumas), V, pp. 690-694.
  47. See ref. 23 (Dumas), p. 267. In chronological order, maybe the first of the ‘illustrious chemists’ Dumas was thinking of was Christoph Girtanner (1760 - 1800), who already prophesied an alchemical vengeance ushered by the decomposition of bodies deemed elementary, starting with nitrogen: “There is no refuted opinion to which we may not recur, and again examine. Philosophy acknowledges no authority which can proscribe it from admitting, or forbid it to examine. There are many other opinions, long ago refuted, to which we ought still to recur; for example, that of the transmutation of metals. What chemist at present will dare to deny the possibility of it? The change of one metal into another ought to appear less difficult than the conversion of the sweetest body (sugar) into the sourest (oxalic acid); than the change of the hardest body (the diamond) into the softest (carbonic acid gas); than the change of the most transparent (the diamond) into the most opake (charcoal). In the 19th century the transmutation of metals will be generally known and practised”; C. Girtanner, The Philosophical Magazine, 1800, 6, pp. 335-354: 353.
  48. J.-B. Dumas, J. von Liebig, Comptes rendus de l’Académie des Sciences, 1837, 5, pp. 567-572; O. T. Benfey, From Vital Force to Structural Formulas, Houghton Mifflin Co., Boston, 1964, pp. 36-37; see ref. 39 (Klein), pp. 161-163.
  49. J.-B. Dumas, Comptes rendus de l’Académie des Sciences, 1840, 10, pp. 149-178: 158; Id., Annales de chimie et de physique, 1840, 73, pp. 73-100; Id., Justus Liebigs Annalen der Chemie, 1840, 33, pp. 259-300; see ref. 2 (Chaigneau), pp. 117-131; C. Gérard, L’actualité chimique, 2002, 254, pp. 38-46; see ref. 39 (Klein), pp. 188-202.
  50. See ref. 2 (Chaigneau), pp. 78-79; W. H. Brock, Justus von Liebig: The Chemical Gatekeeper, Cambridge University Press, Cambridge, 1995, pp. 80-87; A. J. Rocke, Nationalizing Science: Adolphe Wurtz and the Battle for French Chemistry, The MIT Press, Cambridge (MA)-London, 2001, pp. 94-95; J. Drulhon, Jean-Baptiste Dumas (1800-1884). La vie d’un chimiste dans les allées de la science et du pouvoir, Hermann, Paris, 2011, pp. 84-87.
  51. E. I. Hjelt, Sammlung chemischer und chemisch-technischer Vorträge, 1908, 12, pp. 447-482 (or. ed. Berzelius - Liebig - Dumas i deras förhållande till radikalteorin 1832-1840, Edlundska bokhandeln, Helsingfors, 1903).
  52. A.-É. Baudrimont, Traité de chimie générale et expérimentale, avec les applications aux Arts, à la Médecine et à la Pharmacie, chez J.-B. Baillière, Paris, 1844-46 (2 vols.), I, pp. 68-69, 275.
  53. J. W. Döbereiner, Annalen der Physik und Chemie, 1829, 15, pp. 301-307; E. Scerri, The Periodic Table: Its Story and Its Significance, Oxford University Press, Oxford-New York, 20202, pp. 46-54.
  54. Id., Foundations of Chemistry, 2010, 12,1, pp. 69-83; see ref. 50 (Scerri), pp. 33-135.
  55. L. Cerruti, in S. Cannizzaro, Sunto di un corso di filosofia chimica (Ed.: L. Cerruti), Sellerio, Palermo, 1991, pp. 73-282: 185; L. Anatrini, M. Ciardi, La scienza impossibile. Percorsi dell’alchimia in Francia tra Ottocento e Novecento, Carocci, Roma, 2019, p. 39-41, see ref. 50 (Scerri), p. 56.
  56. W. V. Farrar, The British Journal for the History of Science, 1965, 2,4, pp. 297-323: 305-306; see ref. 52 (Cerruti), pp. 185-190.
  57. Report of the Twenty-first Meeting of the British Association for the Advancement of Science; held at Ipswich in July 1851, John Murray, Albemarle Street, London, 1852, p. xxi.
  58. L. A. Marchand, The Athenaeum: A Mirror of Victorian Culture, The University of North Carolina Press, Chapel Hill (NC), 1941, p. 226.
  59. [L. Playfair], The Athenaeum: Journal of Literature, Science, and the Fine Arts, 12 July 1851, 1237, p. 750; see ref. 53 (Farrar), p. 304.
  60. This kind of papers, sent in the form of pli cacheté to be kept sealed, was used in disputes concerning discoveries and inventions, in order to establish paternity. The senders made use of them in particular, as in the case of Tiffereau, when they considered the results of their research not yet definitive, and therefore not disclosable. Thus, in most cases, as no dispute arose, these papers remained secret and their content known only to the authors. The Académie des Sciences, since the early 1980s, has adopted a new policy whereby papers dating back at least one hundred years can be opened; É. Brian, C. Demeulenaere-Douyère, Histoire et mémoire de l’Académie des sciences: guide des recherches, Tec & Doc, Paris, 1996, pp. 73-74. The contents of the memoir sent by Tiffereau on 6 January 1851 only became known on 9 June 1983; Archives de l’Académie des Sciences, pli cacheté 1070.
  61. Tiffereau is one of the very few protagonists of 19th century alchemical research on whose work a dedicated study has been conducted: L. M. Principe, Alchemy and Chemistry. Breaking Up and Making Up (Again and Again), Smithsonian Libraries, Washington D.C., 2017, pp. 24-53. For a detailed biographical profile of Tiffereau, see P. Virat, Vaugirard-Grenelle: Bulletin de la Société Historique et Archéologique du XVe Arrondissement de Paris, 2015, 45, pp. 47-58.
  62. C.-T. Tiffereau, Les métaux sont des corps composés. Production artificielle de l’or […], Imprimerie A. Quelquejeu, rue Gerbert, 10, Paris, 1888, pp. 9-20, Id., La science en face de la transmutation des métaux. Production chimique de l’or, Imprimerie Billon, rue du Commerce, 47, Paris, 1906, pp. 4-8.
  63. Id., La transmutation des métaux. Les métaux sont des corps composés ainsi que les gaz, preuves incontestables basées sur des faits indéniables, chez l’Auteur, Vaugirard; Imprimerie A. Quelquejeu, rue Gerbert, 10, Paris, 1900, pp. 4-5. Of the numerous accounts of the experiment provided by Tiffereau, this is arguably the most detailed one.
  64. Archives de l’Académie des Sciences, pli cacheté 1052; C.-T. Tiffereau, Nouveaux procédés d’irrigation, de desséchement et de drainage spécialement applicables à la grande et à la petite industrie agricole […], Imprimerie de L. Martinet, rue Mignon, 2, Paris, 1854.
  65. This other pli remained sealed until 1983, while the incredible annex containing the artificial gold sample was not opened until 2015 (related chemical analyses have yet to be conducted); see ref. 58 (Principe), pp. 28-33; Id., L’actualité chimique, 2017, 424, pp. 68-71: 70-71.
  66. Comptes rendus de l’Académie des Sciences, 1853, 37, p. 579.
  67. See ref. 34 (Gay-Lussac, Thénard).
  68. Bulletin des lois de l’empire français. XIe série, Imprimerie impériale, Paris, 1853-69 (34 voll.), V (1855), pp. 1161, 1178.
  69. J. C. Poggendorff, Biographisch-literarisches Handwörterbuch zur Geschichte der exacten Wissenschaften […], Verlag von Johann Ambrosius Barth, Leipzig, 1863 (2 vols.), I, col. 1442; F. Szabadváry, History of Analytical Chemistry, Pergamon, Oxford, 1966, p. 274.
  70. C.-T. Tiffereau, Les métaux sont des corps composés […], Imprimerie d’Alfred Choisnet, rue de l’Église, 6 et 8, Vaugirard, 1855, pp. 47-52. As carefully pointed out - see ref. 58 (Principe), p. 74 - the experimental protocol followed by Levol at the mint differed from the one originally developed by Tiffereau in Mexico. Unfortunately, the same goes with the only known reproduction conducted in more recent times; cf. A. Truman Schwartz, G. B. Kauffman, Journal of Chemical Education, 1976, 53,3, pp. 136-138, 53,4, pp. 235-239: 238.
  71. J.-B. Dumas, Comptes rendus de l’Académie des Sciences, 1857, 45, pp. 709-731; Id., ivi, 1858, 46, pp. 951-953; 47, pp. 1026-1034 ; Id., ivi, 1859, 48, pp. 139-142, 372-375; Id., Annales de chimie et de physique, 1859, 55, pp. 129-210.
  72. See ref. 2 (Chaigneau), pp. 178-183.
  73. S. Cannizzaro, Nuovo Cimento, 1858, 8, pp. 16-17: 16.
  74. See refs. 68 (Dumas 1859 Annales), pp. 207-209, 52 (Cerruti), pp. 188-189, and 52 (Anatrini, Ciardi), pp. 39-40.
  75. See ref. 58 (Principe), p. 51.
  76. See ref. 52 (Anatrini, Ciardi), pp. 117-118, 160-161. On the role of ether physics in late 19th-century chemical research and esoteric discourse, see Conceptions of Ether. Studies in the History of Ether Theories, 1740-1900 (Eds.: G. N. Cantor, M. J. S. Hodge), Cambridge University Press, Cambridge, 1981; H. Kragh, Ambix, 1989, 36,2, pp. 49-65; E. Asprem, Aries. Journal for the Study of Western Esotericism, 2011, 11,2, pp. 129-165.
  77. P. Colmant, Revues des questions scientifiques, 1972, 33, pp. 493-519; A. J. Rocke, Chemical Atomism in Nineteenth Century, Ohio State University Press, Columbus (OH), 1984, pp. 321-326.
  78. See refs. 14 (Faershtein), pp. 342-343, 5 (Solov’ev), p. 151, and 52 (Cerruti), pp. 207-214; H. Hartley in Studies in the History of Chemistry, Clarendon Press, Oxford, 1971, pp. 185-194; M. Ciardi, Reazioni tricolori. Aspetti della chimica italiana nell’età del Risorgimento, Franco Angeli, Milano, 2010, pp. 1