Vol. 8 No. 1 (2024)
Research Articles

Synthesis, Structural Characterization, and Biological Evaluation of (E)-N-(4-Bromobenzylidene)-3-Methoxybenzohydrazide Monohydrate

Kumar Ananthi
Department of Chemistry, Annamalai University, Tamil Nadu, India
Haridhass Anandalakshmi
Department of Chemistry, Annamalai University, Tamil Nadu, India
Amaladoss Nepolraj
Department of Chemistry, PGP College of Arts and Science, Paramathi, Tamil Nadu, India
Saravanan Akshaya
Department of Chemistry, Annamalai University, Tamil Nadu, India

Published 2024-03-04

Keywords

  • Hybrid crystals,
  • π···π interactions,
  • Molecular docking,
  • Hirshfeld surface,
  • ADMET

How to Cite

Ananthi, K., Anandalakshmi, H., Nepolraj, A., & Akshaya, S. (2024). Synthesis, Structural Characterization, and Biological Evaluation of (E)-N-(4-Bromobenzylidene)-3-Methoxybenzohydrazide Monohydrate. Substantia, 8(1), 25–38. https://doi.org/10.36253/Substantia-2294

Abstract

Synthesis and structural elucidation of a new type of hydrazone Schiff base (E)-N’-(4-Bromobenzylidene)-3-Methoxybenzohydrazide Monohydrate, and its structure were characterized by FT-IR, 1H, 13C NMR and mass spectroscopic analysis. The single crystals of (4-BRMBH) were grown from the DMSO solvent, orthorhombic system with P212121 space group through single-crystal X-ray diffraction analysis. DFT calculations were performed to understand the electronic properties including frontier molecular orbitals (FMO), molecular electrostatic potentials, and global chemical reactivity descriptors. Intermolecular interactions in the crystal structures were obtained using the Hirshfeld surface analysis. The majority contribution to the Hirshfeld surface is H···H (39.5%) contacts. The molecular docking study were carried out by in silico method to analyse their anti-tuberculosis aspect against InhA, the enoyl acyl carrier protein reductase from Mycobacterium tuberculosis. Finally, chemical absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties were determined.

References

  1. N.G. Kandile, M.I. Mohamed, H.M. Ismaeel, Synthesis of new Schiff bases bearing 1,2,4-triazole, thiazolidine and chloroazetidine moieties and their pharmacological evaluation, J. Enzyme Inhib. Med. Chem., 2017, 32, 119–129. https://doi.org/10.1080/14756366.2016.1238365
  2. U. Casellato, P.A. Vigato, M. Vidali, Transition metal complexes with binucleating ligands, Coord. Chem. Rev., 1977 23, 31–117. https://doi.org/10.1016/S0010-8545(00)80330-6
  3. K. Dey, A.K. Biswas, A. Roy, Metallic complexes as ligands: Part II-Nickcl(II) complex of the Schiff base derived from 3-formylsalicylic acid and ethylenediamine as ligand for Ti, Zr, Sn, P and B, Indian J. Chem., 1981, 20A, 848–851.
  4. L. Pogany, J. Moncol, M. Gal, I. Salitros, R. Boca, Four cobalt (III) Schiff base complexes – Structural, spectroscopic and electrochemical studies, Inorg. Chim. Acta., 2017 462, 23–29. https://doi.org/10.1016/j.ica.2017.03.001
  5. C. M. da Silva, D. L. da Silva, L. V. Modolo, R. B. Alves, M. A. Deresede, C. V. Martin, A. Defatima, Schiff bases: A short review of their antimicrobial activities, J. Adv. Res., 2011, 2, 1–8. https://doi.org/10.1016/j.jare.2010.05.004
  6. M. Andruh, Compartmental Schiff-base ligands – a rich library of tectons in designing magnetic and luminescent materials, Chem. Commun., 2011, 47, 3025–3042. https://doi.org/10.1039/C0CC04506C
  7. M. Sarigul, A. Sari, M. Kose, V. McKee, M. Elmastas, I. Demirtas, M. Kurtoglu, New bio-active azo-azomethine based Cu (II) complexes, Inorg. Chim. Acta., 2016, 444, 166– 175. https://doi.org/10.1016/j.ica.2016.01.042
  8. H. Keypour, M. Shayesteh, M. Rezaeivala, F. Chalabian, Y. Elerman, O. Buyukgungor, Synthesis, spectral characterization, structural investigation and antimicrobial studies of mononuclear Cu(II), Ni(II), Co(II), Zn(II) and Cd(II) complexes of a new potentially hexadentate N2O4 Schiff base ligand derived from salicylaldehyde, J. Mol. Struct., 2013 1032, 62–68. https://doi.org/10.1016/j.molstruc.2012.07.056
  9. D. Chen, A.E. Martell, Dioxygen affinities of synthetic cobalt Schiff base complexes, Inorg. Chem., 1987, 26, 1026–1030. https://doi.org/10.1021/ic00254a013
  10. D. Chen, A.E. Martell, Y. Sun, New synthetic cobalt Schiff base complexes as oxygen carriers, Inorg. Chem., 1989, 2, 2647–2652. https://doi.org/10.1021/ic00312a029
  11. K. Durka, A.A. Hoser, R. Kaminski, S. Lulinski, J. Serwatowski, W. Kozminski, K. Wozniak, Polymorphism of a model arylboronicazaester: Combined experimental and computational studies, Cryst. Growth. Des., 2011, 11, 1835–1845. https://doi.org/10.1021/cg200032e
  12. M. Behzad, L. SeifikarGhomi, M. Damercheli, B. Mehravi, M. ShafieeArdestani, H.SamariJahromi, Z. Abbasi, Crystal structures and in vitro anticancer studies on new unsymmetrical copper(II) Schiff base complexes derived from meso-1,2-diphenyl-1,2- ethylenediamine: a comparison with related symmetrical ones, J. Coord. Chem., 2016, 69, 2469–2481. https://doi.org/10.1080/00958972.2016.1198786
  13. Y. L. Zhang, W. J. Ruan, X. J. Zhao, H. G. Wang, Z. A. Zhu, Synthesis and characterization of axial coordination cobalt (III) complexes containing chiral Salen ligands, Polyhedron, 2003, 22, 1535–1545. https://doi.org/10.1016/S0277-5387(03)00261-4
  14. Z. Abbasi, M. Behzad, A. Ghaffari, H. AmiriRudbari, G. Bruno,Mononuclear and dinuclearsalen type copper(II) Schiff base complexes: Synthesis, characterization, crystal structures and catalytic epoxidation of cyclooctene, Inorg. Chim. Acta., 2014, 414, 78–84. https://doi.org/10.1016/j.ica.2014.01.047
  15. M. R.V. Jørgensen, I. Skovsen, H. F. Clausen, J. L. Mi, M. Christensen, E. Nishibori, M. A. Spackman, B. B. Iversen, Inorg. Chem., 2012, 51, 1916–1924. https://doi.org/10.1021/ic202231k
  16. Y. H. Luo, B. W. Sun, An investigation into the substituent effect of halogen atoms on the crystal structures of indole-3-carboxylic acid (ICA), CrystEngComm., 2013, 15, 7490–7497. https://doi.org/10.1039/C3CE40952J
  17. A. Ghaffari, M. Behzad, M. Pooyan, H. AmiriRudbari, G. Bruno, Crystal structures and catalytic performance of three new methoxy substituted salen type nickel (II) Schiff base complexes derived from meso-1,2-diphenyl-1,2-ethylenediamine, J. Mol. Struct., 2014, 1063, 1–7. https://doi.org/10.1016/j.molstruc.2014.01.052
  18. H. C. Wang, X. Q. Yan, T. L. Yan, H. X. Li, Z. C. Wang, Design, synthesis and biological evaluation of benzohydrazide derivatives containing dihydropyrazoles as potential EGFR kinase inhibitors, Molecules. 2016, 21, 1012. https://doi.org/10.3390/molecules21081012
  19. B. Rigo, D. Couturier, Studies on pyrrolidinones. Synthesis of 5-(5-oxo-2-pyrrolidinyl)-1,3,5-oxadiazole-2-thione derivatives, Heterocycl. Chem., 1985, 22, 287–288. https://doi.org/10.1002/jhet.5570220209
  20. M. Somashekhar, Synthesis and antimicrobial activity of 4-(morpholin-4-yl) benzohydrazide derivatives. World J. Pharm. Pharm. Sci., 2013, 2, 2011–2020.
  21. P. Nun, C. Martin, J. Martinez, F. Lamaty, Solvent-free synthesis of hydrazones and their subsequent N-alkylation in a Ball-mill, Tetrahedron, 2011, 67, 8187–8194. https://doi.org/10.1016/j.tet.2011.07.056
  22. P. Melnyk, V. Leroux, C. Sergheraert, P. Grellier, Bioorg. Med. Chem. Lett., 2006, 16, 31–35. https://doi.org/10.1016/j.bmcl.2005.09.058
  23. I. Afreen, M. Sonam, S. R. Maitreyi, A. Fernando, A. Amir, Synthesis and biological evaluation of 4-(2-(dimethylamino)ethoxy) benzohydrazide derivatives as inhibitors of Entamoebahistolyica, Eur. J. Med. Chem., 2016, 124, 445–455. https://doi.org/10.1016/j.ejmech.2016.08.022
  24. K. K. Bedia, O. Elcin, U. Seda, K. Fatma, S. Nathaly, Synthesis and characterization of novel hydrazide-hydrazones and the study of their structure-antituberculosis activity, Eur. J. Med. Chem., 2006, 41, 1253–1261. https://doi.org/10.1016/j.ejmech.2006.06.009
  25. H. Lgaz, I.-M. Chung, M. R. Albayati, A. Chaouiki, R. Salghi, S. K. Mohamed, Improved corrosion resistance of mild steel in acidic solution by hydrazone derivatives: An experimental and computational study, Arab. J. Chem., 2018, 2934–2954. https://doi.org/10.1016/j.arabjc.2018.08.004
  26. H. Lgaz, A. Chaouiki, M. R. Albayati, R. Salghi, Y. El Aoufir, I. H. Ali, M. I. Khan, S. K. Mohamed, I.-M. Chung, Synthesis and evaluation of some new hydrazones as corrosion inhibitors for mild steel in acidic media, Res. Chem. Intermed., 2019, 45, 2269–2286. https://doi.org/10.1007/s11164-018-03730-y
  27. Stoe and Cie, X-AREA (Version 1.18.) and X-RED32 (Version 1.04.), Stoe and Cie, Germany, Darmstadt, 2002.
  28. G.M. Sheldrick, SHELXT: Integrating space group determination and structure solution, ActaCrystallogr. 2015, A 71, 3–8. https://doi.org/10.1107/S2053273314026370
  29. C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek, P.A. Wood, Mercury CSD 2.0–new features for the visualization and investigation of crystal structures, J. Appl. Crystallogr. 2008, 41, 466–470. https://doi.org/10.1107/S0021889807067908
  30. L. J. Farrugia, WinGX suite for small-molecule single-crystal crystallography, J. Appl. Crystallogr. 1999, 32, 837–838. https://doi.org/10.1107/S0021889899006020
  31. S. P. Westrip, publCIF: software for editing, validating and formatting crystallographic information files, J. Appl. Crystallogr, 2010, 43, 920–925. https://doi.org/10.1107/S0021889810022120
  32. A. Spek, Single-crystal structure validation with the program PLATON, J. Appl. Crystallogr. 2003, 36, 7–13. https://doi.org/10.1107/S0021889802022112
  33. J. J. McKinnon, M. A. Spackman, A. S. Mitchell, Novel tools for visualizing and exploring intermolecular interactions in molecular crystals, J. ActaCrystallogr. 2004, B 60, 627–668. https://doi.org/10.1107/S0108768104020300
  34. M. A. Spackman, D. Jayatilaka, Hirshfeld surface analysis, CrystEngComm., 2009, 11, 19–32. https://doi.org/10.1039/B818330A
  35. M. Venkateshan, R. Vishnu Priya, M. Muthu, J. Suresh, R. Ranjith Kumar, Crystal structure, Hirshfeld surface analysis, DFT calculations and molecular docking studies on pyridine derivatives as potential inhibitors of NAMPT, Chem. Data Collect., 2019, 23, 100262. https://doi.org/10.1016/j.cdc.2019.100262
  36. C. Lee, W. Yang, R.G. Parr, Phys. Rev., 1988, B 37, 785–789. https://doi.org/10.1103/PhysRevB.37.785
  37. A.M. K€oster, M. Leboeuf, D.R. Salahub, in: S.M. Jane, S. Kalidas (Eds.), Molecular electrostatic potentials from density functional theory, Theor. Comput. Chem., 1996, 105–142. https://doi.org/10.1016/S1380-7323(96)80042-2
  38. M. A. Spackman, J. J. McKinnon, Fingerprinting intermolecular interactions in molecular crystals, CrystEngComm., 2002, 4, 378–392. https://doi.org/10.1039/B203191B
  39. S. Madan Kumar, B.C. Manjunath, G.S. Lingaraju, M.M.M. Abdoh, M.P. Sadashiva, N.K. Lokanath, A Hirshfeld surface analysis and crystal structure of 2-[1-(2-fluorophenyl)-1H-tetrazol-5-yl]-4-methoxybiphenyl-2-carbaldehyde, Cryst. Struct. Theor. Appl., 2013, 3, 124–131. DOI: 10.4236/csta.2013.23017
  40. A. Denise Rozwarski, C. Vilcheze, M. Sugantino, R. Bittman, J.C. Sacchettini, J. Biol. Chem., 1999, 274, 15582–15589. https://doi.org/10.1074/jbc.274.22.15582
  41. R. Maheswari, J. Manjula, Vibrational spectroscopic analysis and molecular docking studies of (E)-4-methoxy-N-(4-methylbenzylidene) benzohydrazide by DFT, J. Mol. Struct., 2016, 1115, 144–155. https://doi.org/10.1016/j.molstruc.2016.02.066
  42. M.I. Okeke, C.U. Iroegbu, E.N. Eze, A.S. Okoli, C.O. Esimone, Evaluation of extracts of the roots of Landolphiaowerrience for antibacterial activity, J. Ethnopharmacol., 2001, 78, 119–127. https://doi.org/10.1016/S0378-8741(01)00307-5
  43. A. Nepolraj, V. I. Shupeniuk, M, Sathiyaseelan N. Prakash. Synthesis of new 3‐(hydroxymethyl)‐2‐phenyl‐2, 3 dihydroquinolinone and in‐silico evaluation of COVID‐19 main protease inhibitor. Vietnam J Chemistry., 2021, 59, 511-521 https://doi.org/10.1002/vjch.202000221