Just Accepted Manuscripts
Research Articles

Students’ Mental Model in Understanding Chemical Bonding and Its Correlation with Chemistry Mindset

Atikah Atikah
Department of Chemistry, Universitas Negeri Malang, East Java Indonesia
Bio
Habiddin Habiddin
Department of Chemistry, Universitas Negeri Malang, East Java Indonesia
Bio
Nazriati Nazriati
Department of Chemistry, Universitas Negeri Malang, East Java Indonesia
Bio
Mudzuna Quraisyah Basimin
Department of Chemistry, Universitas Negeri Malang, East Java Indonesia
Bio

Published 2025-06-19

Keywords

  • fixed mindset,
  • growth mindset,
  • non-cognitive factor,
  • visual representation,
  • model and modelling in chemistry

How to Cite

Atikah, A., Habiddin, H., Nazriati, N., & Basimin, M. Q. (2025). Students’ Mental Model in Understanding Chemical Bonding and Its Correlation with Chemistry Mindset. Substantia. https://doi.org/10.36253/Substantia-3476

Abstract

The study aims to describe secondary school students’ mental models and examine their relationship with the chemistry mindset. This research involves 122 secondary school students in the tenth, eleventh, and twelfth grades. Data were collected using a structured descriptive assessment and a chemistry mindset questionnaire. Students’ mental models were categorized according to Kurnaz & Eksi's indicator, while the chemistry mindset employed the framework established by Santos et al. Pearson's coefficient measures the correlation between the mental model and the chemistry mindset. This study finds that many of the students’ mental models fall into initial and synthetic categories, with only a small number in the scientific category. The number of students with the synthetic model peaks in the formation of ions at 63.11%, the initial category on covalent bonding at 54.92%, and the scientific category on coordinate covalent bonding at 18.85%. Moreover, this study indicates a weak positive relationship between the mental model and the chemistry mindset. Students’ confidence during chemistry class influences this issue. Therefore, teachers are expected to select the appropriate learning model to enhance students’ achievement and mindset towards chemistry.

References

  1. K. Anwar, S. Sunyono, and N. Kadaritna, “Pembelajaran Model SiMaYang Tipe II untuk Meningkatkan Model Mental dan Penguasaan Konsep,” J. Pendidik. dan pembelajaran Kim., vol. 4, no. 3, pp. 795–806, 2015.
  2. R. Kusumaningdyah, I. Devetak, Y. Utomo, E. Effendy, D. Putri, and H. Habiddin, “Teaching Stereochemistry with Multimedia and Hands-On Models: The Relationship between Students’ Scientific Reasoning Skills and The Effectiveness of Model Type,” Cent. Educ. Policy Stud. J., vol. 14, no. 1, pp. 171–197, May 2024, doi: 10.26529/cepsj.1547.
  3. Y. Ling, X. Ye, and M. Cao, “Modeling Using Multiple Connected Representations: An Approach to Solving Problems in Chemical Education,” J. Chem. Educ., vol. 101, no. 6, pp. 2395–2405, Jun. 2024, doi: 10.1021/acs.jchemed.3c01261.
  4. G. M. Bodner, D. E. Gardner, and M. W. Briggs, “Models and Modeling,” in Chemists’ Guide to Effective Teaching, Volume 1, N. Pienta, M. Cooper, and T. Greenbowe, Eds. New Jersey: Prentice-Hall, 2005, pp. 67–76.
  5. L. McClary and V. Talanquer, “College chemistry students’ mental models of acids and acid strength,” J. Res. Sci. Teach., vol. 48, no. 4, pp. 396–413, 2011, doi: 10.1002/tea.20407.
  6. R. Justi and J. K. Gilbert, “Models and Modelling in Chemical education,” in Chemical Education: Towards Research-based Practice, J. K. Gilbert, O. De Jong, R. Justi, D. F. Treagust, and J. H. Van Driel, Eds. Dordrecht: Springer Netherlands, 2003, pp. 47–68. doi: 10.1007/0-306-47977-X_3.
  7. T. N. Rončević, “An exploration of mental models in chemistry education research,” AIP Conf. Proc., vol. 3106, no. 1, p. 40001, May 2024, doi: 10.1063/5.0214882.
  8. N. Jansoon, R. K. Coll, and E. Somsook, “Understanding Mental Models of Dilution in Thai Students,” Int. J. Environ. Sci. Educ., vol. 4, no. 2, pp. 147–168, 2009, doi: http://www.ijese.net/makale/1387.html.
  9. F. R. Amalia, S. Ibnu, H. R. Widarti, and H. Wuni, “Students’ mental models of acid and base concepts taught using the cognitive apprenticeship learning model,” J. Pendidik. IPA Indones., vol. 7, no. 2, pp. 187–192, 2018, doi: 10.15294/jpii.v7i2.14264.
  10. I. W. Redhana, I. B. Sudria, I. N. Suardana, I. W. Suja, and V. D. Putriani, “Students’ mental models in acid-base topic,” J. Phys. Conf. Ser., vol. 1521, no. 4, 2020, doi: 10.1088/1742-6596/1521/4/042092.
  11. R. K. Coll, “The Role of Models, Mental Models and Analogies in Chemistry Teaching,” in Metaphor and Analogy in Science Education, P. J. Aubusson, A. G. Harrison, and S. M. Ritchie, Eds. Dordrecht: Springer Netherlands, 2006, pp. 65–77. doi: 10.1007/1-4020-3830-5_6.
  12. A. Atikah, H. Habiddin, N. Nazriati, S. Rahayu, and I. W. Dasna, “A Systematic Literature Review: Model Mental pada Konsep-Konsep Kimia,” J. Inov. Pendidik. Kim., vol. 17, no. 2, pp. 106–115, 2023, doi: https://doi.org/10.15294/jipk.v17i2.39070.
  13. M. A. Kurnaz and C. Eksi, “An analysis of high school students’ mental models of solid friction in physics,” Kuram ve Uygulamada Egit. Bilim., vol. 15, no. 3, pp. 787–795, 2015, doi: 10.12738/estp.2015.3.2526.
  14. J. W. Lin and M. H. Chiu, “The mismatch between students’ mental models of acids/bases and their sources and their teacher’s anticipations thereof,” Int. J. Sci. Educ., vol. 32, no. 12, pp. 1617–1646, 2010, doi: 10.1080/09500690903173643.
  15. K. G. Larson, G. R. Long, and M. W. Briggs, “Periodic Properties and Inquiry: Student Mental Models Observed during a Periodic Table Puzzle Activity,” J. Chem. Educ., vol. 89, no. 12, pp. 1491–1498, Nov. 2012, doi: 10.1021/ed200625e.
  16. A. Rahmadani, “Analisis Model Mental Siswa SMA dengan Kemampuan Berpikir Ilmiah Berbeda dalam Memahami Konsep Larutan Elektrolit,” Semin. Nas. Pendidik. Biol. dan Saintek II, 2017.
  17. G. A. Radvansky, L. D. Gerard, R. T. Zacks, and L. Hasher, “Younger and older adults’ use of mental models as representations for text materials.,” Psychology and Aging, vol. 5, no. 2. American Psychological Association, US, pp. 209–214, 1990. doi: 10.1037/0882-7974.5.2.209.
  18. P. R. Wichaidit, “Understanding growth mindset and chemistry mindsets of high-achieving students and the impact of influential language on learning motivation,” Chem. Educ. Res. Pract., vol. 26, no. 2, pp. 420–444, 2025, doi: 10.1039/D4RP00218K.
  19. L. B. Limeri et al., “Growing a growth mindset: characterizing how and why undergraduate students’ mindsets change,” Int. J. STEM Educ., vol. 7, no. 1, p. 35, 2020, doi: 10.1186/s40594-020-00227-2.
  20. B. Demirdöğen and S. E. Lewis, “Investigating How Chemistry Students’ Reported Challenges Inform the Relationship between Mindset and Academic Performance,” J. Chem. Educ., vol. 100, no. 9, pp. 3252–3260, Sep. 2023, doi: 10.1021/acs.jchemed.3c00452.
  21. N. Naibert, S. R. Mooring, and J. Barbera, “Investigating the Relations between Students’ Chemistry Mindset, Self-Efficacy, and Goal Orientation in General and Organic Chemistry Lecture Courses,” J. Chem. Educ., vol. 101, no. 2, pp. 270–282, Feb. 2024, doi: 10.1021/acs.jchemed.3c00929.
  22. M. Vrabec and M. Prokša, “Identifying Misconceptions Related to Chemical Bonding Concepts in the Slovak School System Using the Bonding Representations Inventory as a Diagnostic Tool,” J. Chem. Educ., vol. 93, no. 8, pp. 1364–1370, 2016, doi: 10.1021/acs.jchemed.5b00953.
  23. D. L. Santos, H. Gallo, J. Barbera, and S. R. Mooring, “Student perspectives on chemistry intelligence and their implications for measuring chemistry-specific mindset,” Chem. Educ. Res. Pract., vol. 22, no. 4, pp. 905–922, 2021, doi: 10.1039/D1RP00092F.
  24. R. B. King, “Mindsets are contagious: The social contagion of implicit theories of intelligence among classmates,” Br. J. Educ. Psychol., vol. 90, no. 2, pp. 349–363, May 2020, doi: https://doi.org/10.1111/bjep.12285.
  25. H. Sevian and V. Talanquer, “Rethinking chemistry: a learning progression on chemical thinking,” Chem. Educ. Res. Pract., vol. 15, no. 1, pp. 10–23, 2014, doi: 10.1039/C3RP00111C.
  26. D. L. Santos, J. Barbera, and S. R. Mooring, “Development of the Chemistry Mindset Instrument (CheMI) for use with introductory undergraduate chemistry students,” Chem. Educ. Res. Pract., vol. 23, no. 3, pp. 742–757, 2022, doi: 10.1039/D2RP00102K.
  27. A. Kahveci, “Assessing high school students’ attitudes toward chemistry with a shortened semantic differential,” Chem. Educ. Res. Pract., vol. 16, no. 2, pp. 283–292, 2015, doi: 10.1039/C4RP00186A.
  28. S. Ariani, E. Effendy, and S. Suharti, “Model Mental Mahasiswa Pada Fenomena Penghilangan Karat Melalui Elektrolisis,” Chem. Educ. Pract., vol. 3, no. 2, p. 55, 2020, doi: 10.29303/cep.v3i2.2104.
  29. R. K. Coll and N. Taylor, “Mental Models in Chemistry: Senior Chemistry Students’ Mental Models of Chemical Bonding,” Chem. Educ. Res. Pract., vol. 3, no. 2, pp. 175–184, 2002, doi: 10.1039/B2RP90014A.
  30. D. Lajium, “Students’ mental models of chemical reactions,” Waikato J. Educ., vol. 18, no. 2 SE-Doctoral Thesis Abstracts, Dec. 2013, doi: 10.15663/wje.v18i2.174.
  31. W. Wiji, “The effect of mental model-based learning on the academic proficiency in school-level chemistry of pre-service teachers,” J. Turkish Sci. Educ., vol. 22, no. 1 SE-Articles, pp. 63–86, Mar. 2025, doi: 10.36681/tused.2025.005.
  32. N. D. Körhasan and L. Wang, “Students’ mental models of atomic spectra,” Chem. Educ. Res. Pract., vol. 17, no. 4, pp. 743–755, 2016, doi: 10.1039/c6rp00051g.
  33. A. T. Uleng, M. Damsi, and Y. K. Sembiring, “Mental Models in Chemistry Concept: A Systematic Review,” J. Penelit. Pendidik. IPA, vol. 10, no. 11 SE-Review, pp. 764–777, Nov. 2024, doi: 10.29303/jppipa.v10i11.6353.
  34. P. A. Smiley, K. V. Buttitta, S. Y. Chung, V. X. Dubon, and L. K. Chang, “Mediation models of implicit theories and achievement goals predict planning and withdrawal after failure,” Motiv. Emot., vol. 40, no. 6, pp. 878–894, 2016, doi: 10.1007/s11031-016-9575-5.
  35. L. Cohen, L. Manion, and K. Morrison, Research Methods in Education, 8th ed. London: Routledge, Taylor Francis Ltd, 2018.
  36. R. B. King and J. E. Trinidad, “Growth mindset predicts achievement only among rich students: examining the interplay between mindset and socioeconomic status,” Soc. Psychol. Educ., vol. 24, no. 3, pp. 635–652, 2021, doi: 10.1007/s11218-021-09616-z.
  37. D. Park, E. A. Gunderson, E. Tsukayama, S. C. Levine, and S. L. Beilock, “Young children’s motivational frameworks and math achievement: Relation to teacher-reported instructional practices, but not teacher theory of intelligence.,” J. Educ. Psychol., vol. 108, no. 3, pp. 300–313, 2016, doi: 10.1037/edu0000064.