Giemsa-based chromosome staining and comparative fluorescent banding pattern in five valuable Indian plant species
DOI:
https://doi.org/10.36253/caryologia-3007Keywords:
CMA-DAPI banding, Giemsa staining, Allium cepa and A. sativum, Aloe vera, Nigella sativa, Trigonella foenum-graecumAbstract
This study presents repeatable enzymatic maceration and air drying (EMA)-based chromosome preparation methods in five valuable Indian plant species namely Allium cepa, Allium sativum, Nigella sativa, Trigonella foenum-graecum, and Aloe vera. Comparative fluorescent banding studies with two DNA base-specific fluorescent dyes have precisely unraveled the number, position, and patterns of secondary constriction of each species. Additionally, it has highlighted the fluorescent banding pattern of repetitive DNA sequences notably on two important constitutive heterochromatic sites like secondary and primary constrictions. The study has established that EMA-based fluorescent banding can provide valuable complementary information for modern genomics. The results are expected to enrich our knowledge of chromosome biology and crop genomics and inspire future academic and research endeavours.
Downloads
References
Adams SP, Leitch IJ, Bennett MD, Chase MW, Leitch AR. 2000. Ribosomal DNA evolution and phylogeny in Aloe (Asphodelaceae). Ame J Bot. 87(11): 1578–1583.
Agarwal K. 1983. Cytological studies in the genus Trigonella Linn. Cytologia 48(4):771–779. https://doi.org/10.1508/cytologia.48.771
Ahmad F, Acharya SN, Mir Z, Mir PS. 1999. Localization and activity of rRNA genes on fenugreek (Trigonella foenum-graecum L.) chromosomes by fluorescent in situ hybridization and silver staining. Theor Appl Genet. 98:179–185. https://doi.org/10.1007/s001220051056
Ainsworth D. 2022. UN convention on biological diversity (COP 15) held in Montreal Canada.
Bacelar PAA, Feitoza LL, Valente SES, Gomes RLF, Martins LV, Almeida PM, Silva VB, Lopes ACA, Carvalh R, Peron AP. 2021. Variations in heterochromatin content reveal important polymorphisms for studies of genetic improvement in garlic (Allium sativum L.). Braz J Biol. 83: e243514. https://doi.org/10.1590/1519-6984.243514
Barbosa AC, Xu Z, Karari K, Williams W, Hauf S, Brown WR. 2022. Mutation and selection explain why many eukaryotic centromeric DNA sequences are often A+ T rich. Nu Acid Res. 50(1):579–596. https://doi.org/10.1093/nar/gkab1219
Bhowmick BK, Sarkar S, Roychowdhury D, Patil SD, Lekhak MM, Ohri D, Rao SR, Yadav SR, Verma RC, Dhar MK, Raina SN. 2023. Allium cytogenetics: a critical review on the Indian taxa. Comp Cytogenet. 17:129. 10.3897/CompCytogen.17.98903
Cortes F, Gonzalez-Gil G, Hazen MJ. 1983. C-banding and sister chromatid exchanges in three species of the genus Allium (A. cepa, A. ascalonicum and A. sativum). Caryologia 36(3):203–210. https://doi.org/10.1080/00087114.1983.10797661
Das A, Mukherjee P, Ghoroi A, Jha TB. 2011. Comparative karyomorphologycal analyses of in vivo and in vitro grown plants of Aloe vera l. Burm. F. Nucleus 53(3):89–94.
Das AB, Mohanty S, Das P. 2001. Cytophotometric estimation of 4C DNA content and karyotype analysis in ten cultivars of Trigonella foenum-graecum. Iran J Bot. 9(1):1–9
Flavell RB. 2021. Perspective: 50 years of plant chromosome biology. Plant Physiol. 185(3):731-53. https://doi.org/10.1093/plphys/kiaa108
Fukui K. 1996. Plant chromosomes at mitosis. In: Fukui K, Nakayama S, editors. Plant chromosomes: laboratory methods. Boca Raton (BR): CRC Press; p. 1–17.
Ghosh A, Datta AK. 2006. Karyotyping of Nigella sativa L. (black cumin) and Nigella damascena L. (love-in-a-mist) by image analyzing system. Cytologia 71(1):1–4.
Guerra M, Santos KGBD, Silva AEB, Ehrendorfer F. 2000. Heterochromatin banding patterns in Rutaceae-Aurantioideae– a case of parallel chromosomal evolution. Am J Bot. 87(5):735–747. https://doi.org/10.1159/000121083
Guerra M. 2008. Chromosome numbers in plant cytotaxonomy: concepts and implications. Cytogenet Genom Res. 120(3–4):339–350.
Hizume M. 2015. Fluorescent banding pattern in chromosomes of Tsuga forrestii and T. Sieboldii Pinaceae. Chromo Bot. 10(3):95–100. https://doi.org/10.3199/iscb.10.95
Jha TB, Bhowmick BK, Roy P. 2021. Analysis of CMA-DAPI bands and preparation of fluorescent karyotypes in thirty Indian cultivars of Lens culinaris. Caryologia 74(2):65–77.
Jha TB, Halder M. 2016. Searching chromosomal landmarks in Indian Lentils through EMA-based Giemsa staining method. Protoplasma 253:1223–1231.
Jha TB, Halder M. 2023. Evaluation of karyotype diversity in Indian traditional aromatic rice cultivars through EMA-based non-fluorescent Giemsa and fluorescent DAPI staining. Genet Resour Crop Evol. 1–22. https://doi.org/10.1007/s10722-023-01696-4
Kurata N, Omura T. 1978. Karyotype analysis in rice I. A new method for identifying all chromosome pairs. Jpn J Genet. 54:251–255. https://doi.org/10.1266/jjg.53.251
Levan A, Fredga K, Sandberg AA. 1964. Nomenclature for centromeric position on chromosomes. Hereditus. 52:210–220.
Liehr T. 2021. Molecular cytogenetics in the era of chromosomics and cytogenomic approaches. Front Genet. 12:720507.
Ma J, Wing RA, Bennetzen JL, Jackson SA. 2007. Plant centromere organization: a dynamic structure with conserved functions. Trends Genet 23(3):134-139.
Mancia FH, Sohn SH, Ahn YK, Kim DS, Kim JS, Kwon YS, Kim CW, Lee TH, Hwang YJ. 2015. Distribution of various types of repetitive DNAs in Allium cepa L. based on dual-colour FISH. Hortic Environ Biotechnol. 56(6):793–799. https://doi.org/10.1007/s13580-015-1100-3
Maragheh FP, Janus D, Senderowicz M, Haliloglu K, Kolano B. 2019. Karyotype analysis of eight cultivated Allium species. J Appl Genet. 60(1):1–11. https://doi.org/10.1007/s13353-018-0474-1
Martin E, Akan H. Ekici M, Aytac Z. 2011. Karyotype analyses of ten sections of Trigonella (Fabaceae). Comp Cytogenet. 5(2):105. 10.3897/compcytogen.v5i2.969
Mondin M, Aguiar-Perecin ML. 2011. Heterochromatin patterns and ribosomal DNA loci distribution in diploid and polyploid Crotalaria species (Leguminosae, Papilionoideae), and inferences on karyotype evolution. Genome 54:718–726. https://doi.org/10.1139/g11-034
Moscone EA, Lambrou M, Ehrendorfer F. 1996. Fluorescent chromosome banding in the cultivated species of Capsicum (Solanaceae). Plant Syst Evol. 202:37–63. https://doi.org/10.1007/BF00985817
Najafi S, Anakhatoon EZ, Birsin MA. 2013. Karyotype characterisation of reputed variety of fenugreek (Trigonella foenum-graecum) in West Azerbaijan-Iran. J Appl Biol Sci. 7(1):23–26.
Orooji F, Mirzaghaderi G, Kuo YT, Fuchs J. 2022. Variation in the number and position of rDNA loci contributes to the diversification and speciation in Nigella (Ranunculaceae). Front Plant Sci. 13:917310. https://doi.org/10.3389/fpls.2022.917310
Razumova OV, Alexandrov OS, Bone KD, Karlov GI, Divashuk MG. 2023. Sex chromosomes and sex determination in dioecious agricultural plants. Agron 13(2):540. https://doi.org/10.3390/agronomy13020540
Santra I, Biswas D, Ghosh B. 2023. Chromosomal characterization mediated by karyomorphological analysis and differential banding pattern in fenugreek (Trigonella foenum-graecum L.): a neglected legume. Caryologia 76(3):63–70. https://doi.org/10.36253/caryologia-2159
Sato S, Hizume M, Kawamura S. 1980. Relationship between secondary constrictions and nucleolus organizing regions in Allium sativum chromosomes. Protoplasma 105:77–85. https://doi.org/10.1007/BF01279851
Sato S. 1981. Cytological studies on the satellited chromosomes of Allium cepa. Caryologia 34(4):431–440. https://doi.org/10.1080/00087114.1981.10796911
Shaker SS, Mohammadi A, Shahli MK. 2017. Cytological studies on some ecotypes of Nigella sativa L. in Iran. Cytologia 82(2):123–126. https://doi.org/10.1508/cytologia.82.123
Than MMM, Samaddar T, Bhowmick BK, Jha S. 2017. Fluorescent chromosome banding and genome size estimation in three species of Swertia. Cytologia 82(5):513–520.
Tong P, Pidoux AL, Toda NR, Ard R, Berger H, Shukla M, Torres-Garcia J, Müller CA, Nieduszynski CA, Allshire RC. 2019. Interspecies conservation of organisation and function between nonhomologous regional centromeres. Nat Commun. 10(1):2343. https://doi.org/10.1038/s41467-019-09824-4
Wajahatullah MK, Vahidy AA. 1990. Karyotyping and localization of nucleolar organizer regions in Garlic, Allium sativum L. Cytologia. 55(3):501–504. https://doi.org/10.1508/cytologia.55.501
Yamamoto M, Takeuchi M, Nashima K, Yamamoto T. 2019. Enzyme maceration, fluorescent staining, and FISH of rDNA of Pineapple (Ananas comosus (L.) Merr.) chromosomes. J Hortic. 88(4):455–461.
Yuzbasioglu D. 2004. Karyotyping, C- and NOR banding of Allium sativum L. (Liliaceae) cultivated in Turkey. Pak J Bot. 36(2):343–349.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Timir Jha, Mihir Halder, Biplab Kumar Bhowmick

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Copyright on any open access article in a journal published byCaryologia is retained by the author(s).
- Authors grant Caryologia a license to publish the article and identify itself as the original publisher.
- Authors also grant any third party the right to use the article freely as long as its integrity is maintained and its original authors, citation details and publisher are identified.
- The Creative Commons Attribution License 4.0 formalizes these and other terms and conditions of publishing articles.
- In accordance with our Open Data policy, the Creative Commons CC0 1.0 Public Domain Dedication waiver applies to all published data in Caryologia open access articles.