Quinoa’s response to different sowing periods in two agro-ecological zones of Burkina Faso.

  • Abdalla Dao Institut de l’Environnement et de Recherches Agricoles (INERA), Bobo Dioulasso BP910, Burkina Faso
  • Amidou Guira Institut de Développement Rural (IDR), Université Nazi Boni, Bobo-Dioulasso, Burkina Faso
  • Jorge Alvar-Beltrán Department of Agriculture, Food, Environment and Forestry (DAGRI)-University of Florence, 50144 Florence, Italy https://orcid.org/0000-0003-2454-0629
  • Abdou Gnanda Institut de Développement Rural (IDR), Université Nazi Boni, Bobo-Dioulasso, Burkina Faso
  • Louis Nebie Institut de Développement Rural (IDR), Université Nazi Boni, Bobo-Dioulasso, Burkina Faso
  • Jacob Sanou Institut de l’Environnement et de Recherches Agricoles (INERA), Bobo Dioulasso BP910, Burkina Faso
Keywords: Quinoa, agrometeorology, adaptability, climate-resilient crops, abiotic factors, Sahel

Abstract

The Soudano-Sahelian and Soudanian agro-climatic zones of Burkina Faso extent over 150,000 km2 and 55,000 km2, respectively, equivalent to 75 % of the country’s total surface area. Food security throughout the country is constantly threatened due to inter/intra annual fluctuations on crop production. Climate resilient and highly nutritional crops (Chenopodium quinoa Willd.) are of increasing interest in regions exposed to environmental stresses and having high undernourishment rates. This study examines quinoa’s adaptability in two agro-ecological zones of Burkina Faso (Soudano-Sahelian and Soudanian zones). Four quinoa genotypes (Pasankalla, Negra Collana, Titicaca and Puno) are tested for different sowing periods (from October to January) in two agro-ecological zones, and their effect on crop growth is evaluated. Results show a significant effect of sowing dates on plant phenology in both agro-climatic zones. Photoperiod, temperature and wind speed are the major environmental factors explaining variation in terms of crop growth and development between sowing dates. Emerging findings show that short cycle varieties (Titicaca and Puno) can be highly performing (above 3 t ha-1) when sowing between November-December and October-December in the Soudano-Sahelian and Soudanian zones, respectively. Other genotypes (Pasankalla), can respond better to strong Harmattan winds, besides having similar yields to those reported for Titicaca and Puno. Pasankalla and Negra Collana tend to be susceptible to heat-stress conditions occurring in March-April because of their long cycle (around 120 days).

References

Alvar-Beltrán, J., Dao, A., Marta, A. D., Saturnin, C., Casini, P., Sanou, J., & Orlandini, S. 2019a. Effect of Drought, Nitrogen Fertilization, Temperature, and Photoperiodicity on Quinoa Plant Growth and Development in the Sahel. Agronomy, 9(10), 607.

Alvar-Beltrán, J., Saturnin, C., Dao, A., Dalla Marta, A., Sanou, J., & Orlandini, S. 2019b. Effect of drought and nitrogen fertilisation on quinoa (Chenopodium quinoa Willd.) under field conditions in Burkina Faso. Italian Journal of Agrometereology, (1), 33-43.

Bazile, D. 2015. Chapter 1.4. The dynamics of the global expansion of quinoa growing in view of its high biodiversity. In: Bazile Didier (ed.), Bertero Hector Daniel (ed.), Nieto Carlos (ed.). State of the art report on quinoa around the world in 2013. Santiago du Chili: FAO, CIRAD, p. 42-55

Bazile, D., Pulvento, C., Verniau, A., Al-Nusairi, M. S., Ba, D., Breidy, J., & Sepahvand, N. A. 2016. Worldwide evaluations of quinoa: preliminary results from post international year of quinoa FAO projects in nine countries. Frontiers in Plant Science, 7, 850.

Bertero, H. D., King, R. W., & Hall, A. J. 1999a. Photoperiod-sensitive development phases in quinoa (Chenopodium quinoa Willd.). Field Crops Research, 60(3), 231-243.

Bertero, H. D., King, R. W., & Hall, A. J. 1999b. Modelling photoperiod and temperature responses of flowering in quinoa (Chenopodium quinoa Willd.). Field crops research, 63(1), 19-34.

Bertero, H. D. 2001. Effects of photoperiod, temperature and radiation on the rate of leaf appearance in quinoa (Chenopodium quinoa Willd.) under field conditions. Annals of Botany, 87(4), pp. 422-434.

Bertero, H.D. 2015a. Chapter 5.5: Argentina. In: Bazile Didier (ed.), Bertero Hector Daniel (ed.), Nieto Carlos (ed.). State of the art report on quinoa around the world in 2013. Santiago du Chili: FAO, CIRAD, p. 524-533

Bertero, H.D. 2015b. Chapter 2.1: Environmental control of development. In: Bazile Didier (ed.), Bertero Hector Daniel (ed.), Nieto Carlos (ed.). State of the art report on quinoa around the world in 2013. Santiago du Chili: FAO, CIRAD, p. 120-130

Christiansen, J. L., Jacobsen, S. E., & Jørgensen, S. T. 2010. Photoperiodic effect on flowering and seed development in quinoa (Chenopodium quinoa Willd.). Acta Agriculturae Scandinavica, Section B-Soil & Plant Science, 60(6), 539-544.

Coulibaly, A.k. & Martinez E.A. 2015. Chapter 6.3.1. Assessment and adaptation of quinoa (Chenopodium quinoa Willd.) to the agro-climatic conditions in Mali, West Africa: An example of South-North-South-Cooperation In: Bazile Didier (ed.), Bertero Hector Daniel (ed.), Nieto Carlos (ed.). State of the art report on quinoa around the world in 2013. Santiago du Chili: FAO, CIRAD, p. 524-533

Dao A., Sanou J., Yaméogo C., Kando C., Bakoané A., Traoré S., Dagnoko M., Bazile D. 2016. Quinoa introduction in West Africa: experience of Burkina Faso. International Quinoa Conference 2016: Quinoa for Future Food and Nutrition Security in Marginal Environments, Dubai 6-8 December 2016 [Accessed on: 8/10/2019]. Available at: www.quinoaconference.com.

Fuller, H. J. 1949. Photoperiodic responses of Chenopodium quinoa Willd. and Amaranthus caudatus L. American Journal of Botany, 175-180.

Gandarillas, A., Rojas, W., Bonifacio, A. & Ojeda, N. 2016. Chapter 5.1.a. Quinoa in Bolivia: the Proinpa Foundation’s Perspective. In: Bazile Didier (ed.), Bertero Hector Daniel (ed.), Nieto Carlos (ed.). State of the art report on quinoa around the world in 2013. Santiago du Chili: FAO, CIRAD, p. 344-361

Habsatou, B 2016. Adaptability of quinoa to adverse climatic and soil conditions of Niger. International Quinoa Conference 2016: Quinoa for Future Food and Nutrition Security in Marginal Environments, Dubai 6-8 December 2016 [Accessed on: 8/10/2019]. Available at: www.quinoaconference.com.

Hinojosa, L., Matanguihan, J. B., & Murphy, K. M. 2019. Effect of high temperature on pollen morphology, plant growth and seed yield in quinoa (Chenopodium quinoa Willd.). Journal of agronomy and crop science, 205(1), 33-45.

Hirich, A., Choukr-Allah, R., Jacobsen, S. E., & Benlhabib, O. 2012. Could quinoa be an alternative crop of wheat in the Mediterranean region: case of Morocco. Les notes d’alerte du CIHEAM, 86(2012), 1-8.

Hirich, A., Choukr‐Allah, R., & Jacobsen, S. E. 2014. Quinoa in Morocco–effect of sowing dates on development and yield. Journal of Agronomy and Crop Science, 200(5), 371-377.

Khaemba, C. 2015. Chapter 6.3.2. Production and utilization of quinoa (Chenopodium quinoa Willd.) outside its traditional growing areas: the case of Kenya. In: Bazile Didier (ed.), Bertero Hector Daniel (ed.), Nieto Carlos (ed.). State of the art report on quinoa around the world in 2013. Santiago du Chili: FAO, CIRAD, p. 534-548.

Jacobsen, S. E. 2003. The worldwide potential for quinoa (Chenopodium quinoa Willd.). Food reviews international, 19(1-2), pp. 167-177.

Jacobsen, S. E. 2015. Chapter 6.1.1: Adaptation and scope for quinoa in northern latitudes of Europe. In: Bazile Didier (ed.), Bertero Hector Daniel (ed.), Nieto Carlos (ed.). State of the art report on quinoa around the world in 2013. Santiago du Chili: FAO, CIRAD, p. 436-453

Jarvis, D. E., Ho, Y. S., Lightfoot, D. J., Schmöckel, S. M., Li, B., Borm, T. J., & Kharbatia, N. M. 2017. The genome of Chenopodium quinoa. Nature, 542(7641), 307.

Mosseddaq, F., Bounsir, B., Khallouq, M., Benlhabib, O. 2016. Optimization of quinoa nitrogen nutrition under Mediterranean climatic conditions. International Quinoa Conference 2016: Quinoa for Future Food and Nutrition Security in Marginal Environments, Dubai 6-8 December 2016 [Accessed on: 8/10/2019]. Available at: www.quinoaconference.com.

Mujica, A. 2015. Chapter 5.2: Peru. In: Bazile Didier (ed.), Bertero Hector Daniel (ed.), Nieto Carlos (ed.). State of the art report on quinoa around the world in 2013. Santiago du Chili: FAO, CIRAD, p. 378-387

Noulas, C. 2015. Chapter 6.1.6: Greece. In: Bazile Didier (ed.), Bertero Hector Daniel (ed.), Nieto Carlos (ed.). State of the art report on quinoa around the world in 2013. Santiago du Chili: FAO, CIRAD, p. 492-510

Präger, A., Munz, S., Nkebiwe, P., Mast, B., & Graeff-Hönninger, S. 2018. Yield and quality characteristics of different quinoa (Chenopodium quinoa Willd.) Cultivars grown under field conditions in Southwestern Germany. Agronomy, 8(10), 197.

Pulvento, C. 2015. Chapter 6.2. Quinoa in Italy: research and perspectives. In: Bazile Didier (ed.), Bertero Hector Daniel (ed.), Nieto Carlos (ed.). State of the art report on quinoa around the world in 2013. Santiago du Chili: FAO, CIRAD, p. 454-565.

Razzaghi, F., Plauborg, F., Jacobsen, S. E., Jensen, C. R., & Andersen, M. N. 2012. Effect of nitrogen and water availability of three soil types on yield, radiation use efficiency and evapotranspiration in field-grown quinoa. Agricultural water management, 109, 20-29.

Rojas, W., Pinto, M., Alanoca, C., Gómez, L., León, P., Alercia, A., Diulgheroff, S., Padulosi, S, Bazile, D. 2015. Chapter 1.5: Quinoa genetic resources and ex-situ conservation. In: Bazile Didier (ed.), Bertero Hector Daniel (ed.), Nieto Carlos (ed.). State of the art report on quinoa around the world in 2013. Santiago du Chili: FAO, CIRAD, p. 56-82
Published
2020-05-01
How to Cite
Dao, A., Guira, A., Alvar-Beltrán , J., Gnanda, A., Nebie, L., & Sanou, J. (2020). Quinoa’s response to different sowing periods in two agro-ecological zones of Burkina Faso. Italian Journal of Agrometeorology, (1), 63-72. https://doi.org/10.13128/ijam-731
Section
RESEARCH ARTICLES