First record of nucleus migration in premeiotic antherial cells of Saccharum spontaneum L. (Poaceae)

Authors

DOI:

https://doi.org/10.36253/caryologia-1418

Keywords:

Cytomixis, Nucleus migration, Premeiotic cells, Saccharum spontaneum

Abstract

The occurrence of nucleus migration is reported for the first time in a clone (2n = 64) of ‘Thatch’ grass (Saccharum spontaneum L.) of the family Poaceae. Usually, its premeiotic antherial cells are thin walled, uninucleate and without any trace of chromosome individuality. However, the cells of those anthers that had been affected from flood water stress conditions were anucleated to hexanucleated in varying frequencies. Out of 2567 cells analyzed, two and three cells were noticed to be connected to each other through a well-defined cytoplasmic channel. The nuclei were observed at various stages of their migration in interconnected cells. The remaining cells exhibited a mosaic of anucleate to hexanucleate cells in varying frequencies with a dominance of binucleated condition (43.75%). The anucleate ‘ghost’ cells were much smaller in size than the uninucleate, binucleate and multinucleate cells showing insignificant variation among themselves. The anucleate, binucleate and multinucleate cells appeared to be resulted due to nucleus migration through cytoplasmic channels between two cells. The presence of a nucleus in donor cell united with recipient cell having four nuclei of different sizes, diminutive anucleate cell in the neighbourhood of uninucleate/trinucleate cell or connected with cytoplasmic channel/pentanucleate cell, and disorganizing cytoplasmic channel attached with binucleate/ tetranucleate cell witnessed the accomplishment of nucleus migration. This rare phenomenon of nucleus migration seemed to be triggered by flood water induced stress and facilitated by feeble cell wall. The variation in sizes of nuclei in multinucleate cells might be due to the transfer of nucleus/nuclei of different size(s).  The prominent features of nucleus migration distinguishing it from the cytomixis have been discussed in detail. The syncytes resulted due to nucleus migration might have generated the pollen grains with different genetic constitution resulting into the origin of new intraspecific aneuploids/ polyploids for better adaptability.

Downloads

Download data is not yet available.

References

Bellucci M., Roscini C., Mariani A. 2003. Cytomixis in pollen mother cells of Medicago sativa L. J Hered. 94 (6): 512-516.

Bhat T. A., Gulfishan M., Wani A.A. 2017. Cytomixis: Causes and consequences as a case study in Vicia faba L. In: Chromosome Structure and Abberations, pp. 321-342. Springer, New Delhi.

Dwivedi H., Kumr G. 2018. Induced syncyte formation via cytomixis in Trachyspermum ammi (L.) Sprague (Apiaceae). Caryolgia. 71(4)420-427.

Gottschalk W. 1970. Chromosome and nucleus migration during microsporogenesis of Pisum sativum. Nucleus.13: 1-9.

Himshikha, Kumar P., Gupta R. C., Kumari S., Singhal V. K. 2010. Impact of chromatin transfer and spindle abnormalities on pollen fertility and pollen size in Plantago lanceolata L. Cytologia. 75(4): 421-426.

Kamra O.P. 1960. Chromatin extrusion and cytomixis in pollen mother cells of Hordeum. Hereditas. 46: 592-600.

Khan N. A., Singhal V.K., Gupta R.C. 2018. First record of chromosome count and cytomixis in an endemic species of Clematis ladakhiana Grey-Wilson (Ranunculaceae) from cold deserts of Jammu and Kashmir. Caryologia. 71(3): 233-237.

Kihara H., Lilienfeld F. 1934. Kerneinwanderung und Buildung syndiploider pollen mutterzellen be idem F1 Bastard. Triticum aegelopoides X Aegilops squarrosa. Jpn J Genet. 10: 1-28.

Kravets E. A. 2012. Nature, significance and consequences of cytomixis. Cytol Genet. 46: 188-195.

Kumar G., Choudhary N. 2016. Induced cytomixis and syncyte formation during microsporogenesis in Phaseolus vulgaris L. Cytol Genet. 50(2): 121 – 127.

Kumar G., Naseem S. 2013. EMS induced intercellular chromatin transmigration in Papaver somniferum L. Czeck J Genet Breed. 49(2): 86-89.

Kumar G., Singh S. 2020. Induced cytomictic crosstalk behaviour among micro-meiocytes of Cyamopsis tetragonoloba (L.) Taub. (Cluster bean): Reasons and repercussions. Caryologia. 73(2): 111-119.

Kumar P., Singhal V.K. 2016. Nucleoli migration coupled with cytomixis. Biologia 71(6): 651-659.

Kumar P., Singhal V.K., Srivastava S.K. 2016. Chromosome counts and male meiosis in two species of Pleurospermum Hoffm. (Apiaceae): Additional comments on the cytogeographical pattern of the genus. Caryologia. 69(3): 273-282.

Kumar P., Singhal V.K., Srivastava S.K. 2017. First detection of cytomixis and its consequences in Thalictrum cultratum Wall. (Ranunculaceae). Cytol Genet. 51(5): 384-390.

Kumar R., Rana P.K., Himshikha, Kaur D., Kaur M., Singhal V.K., Gupta R.C., Kumar P. 2015. Structural heterozygosity and cytomixis driven pollen sterility in Anemone rivularis Buch – Ham. ex DC. from Western Himalaya (India). Caryologia. 68(3): 246-253.

Levan A.1941. Syncyte formation in the pollen mother cells of haploid Phleum pratense. Hereditas. 27: 243-252.

Mandal A., Datta A. K., Gupta S., Paul R., Saha A., Ghosh B. K., Bhattacharya A., Iqbal M. 2013. Cytomixis – a unique phenomenon in animal and plant. Protoplasma. 250: 985-996.

Mandal G.D., Nandi A. K. 2017. Cytomixis with associated chromosomal anomalies and reproduction of Chlorophytum borivilianum Santapau and R.R Fern. Taiwania. 62(2): 211 – 225.

Mursalimov S. R., Deineko E.V. 2011. An ultrastructural study of cytomixis in tobacco pollen mother cells. Protoplasma. 248: 717 – 724.

Mursalimov S.R., Deineko E.V. 2015. How cytomixis can form unreduced gametes in tobacco. Plant Syst Evol. 301: 1293 – 1297.

Mursalimov S.R., Ohno, N., Matsumoto M., Bayborodin S., Deineko E.V. 2021. Serial Block-Face Scanning Electron Microscopy Reveals That Intercellular Nuclear Migration Occurs in Most Normal Tobacco Male Meiocytes. Frontiers in Plant Sci. Doi: 10.3389/fpls.2021.672642.

Mursalimov S. R., Sidorchuk Y. V., Deineko E. V.2013. New insights into cytomixis: Specific cellular features and prevalence in higher plants. Planta. 238: 415-423.

Nirmala A., Rao P. N. 1996. Genesis of chromosome numerical mosaicism in higher plants. Nucleus. 39: 151-175.

Omara M. K. 1976. Cytomixis in Lolium perenne. Chromosoma. 55(3): 267 – 271.

Panje R. R., Babu C. N. 1960. Studies in Saccharum spontaneum. Distribution and geographical association of chromosome number. Cytologia 25: 152-172.

Patra N. K., Chauhan S. P. and Srivastava S. K. 1987. Syncytes with premeiotic mitotic and cytomictic compartment in ‘Opium’ poppy (Papaver somniferum L). Indian J Genet. 47 (1): 49-54.

Price S. 1956. Cytological studies in Saccharum and allied genera. I. Syncytes in certain clones of Saccharum and Erianthus. Cytologia. 21: 21-37.

Rana P. K., Kumar P., Singhal V. K. 2013. Spindle irregularities, chromatin transfer and chromatin stickiness during male meiosis in Anemone tetrasepala Royle (Ranunculaceae). Turk J Bot. 37: 167 – 176.

Rana P. K., Kumar P., Singhal V. K. 2014. Cytomixis and associated abnormalities during male meiosis in Lindelofia longiflora var. falconeri (Boraginaceae). Cytologia. 79(4): 535 – 540.

Rana P. K., Kumar P., Singhal V. K.2015. Chromosome counts, chromosomal pairing and pollen fertility in thirty-eight species of Asteraceae from Pangi Valley in district Chamba of Himachal Pradesh (India). Braz J Bot. 38(4): 837-850.

Reis C. A., Souga S. M., Viccini L. F. 2015. High frequency of cytomixis observed at zygotene in tetraploid Lippia alba. Plant Syst Evol. 302(1): 121-127.

Risueno M. C., Gimenez-Martin G., Lopez-Saez J. F., R - Garcia M. I. 1969. Connexions between meiocytes in plants. Cytologia. 34: 262-272.

Romanov I. D., Orlova I. N. 1971. Cytomixis and its consequences in Triticale microsporocytes. Genetika. 7(12): 5 – 13.

Sarbhoy R. K. 1980. Spontaneous occurrence of cytomixis and syndiploidy in Cyamopsis tetragonoloba (L.) Taub. Cytologia.45(3): 375-379.

Schulz – Schaeffer J. 1980. Cytogenetics. Plants, Animals, Humans. Springer – Verlag, New York.

Singh C. B. 1997. Notes on some little known uses of Kans (Saccharum spontaneum L.) from Bhagalpur diara land, Bihar. J Non-Timber Forest Prod. 4(3/4): 173-174.

Singh C. B., Munshi J. D., Sinha S. P. 1989. Cytomixis in PMCs of Saccharum spontaneum L. Curr Sci. 58(13): 755-757.

Singh C. B., Munshi J. D., Sinha S. P. 1990. A new basic chromosome number in Saccharum spontaneum L . Cytologia 55(4): 645-648.

Singh C. B., Singhal V. K., Kumar R. 2018. Genome elimination mediated pollen size dimorphism in clone of Saccharum spontaneum L. (Poaceae): A pathway to intraspecific polyploidy. Eur J Phar Sci. 5 (2): 379-383.

Singhal V. K., Kumar P., Kaur D., Rana P. K. 2009. Chromatin transfer during male meiosis resulted into heterogenous sized pollen grains in Anemone rivularis Buch-Ham. ex DC. from Indian cold deserts. Cytologia. 74(2): 229-234.

Singhal V. K., Kumar R., Kumar P. 2018. A new perception about cytomixis: causes, mechanism and uses. Chromosome Sci. 21: 61-66.

Downloads

Published

2022-09-21

How to Cite

Singh, C. B., Singhal, V. K., & Kapoor, M. (2022). First record of nucleus migration in premeiotic antherial cells of Saccharum spontaneum L. (Poaceae). Caryologia, 75(2), 53–58. https://doi.org/10.36253/caryologia-1418

Issue

Section

Articles

Most read articles by the same author(s)