A A new diploid cytotype of Agrimonia pilosa (Rosaceae)

  • Elizaveta Mitrenina Laboratory of Herbarium, National Research Tomsk State University, Tomsk, Russia
  • Mikhail Skaptsov South-Siberian Botanical Garden, Altai State University, Barnaul, Russia
  • Maksim Kutsev South-Siberian Botanical Garden, Altai State University, Barnaul, Russia
  • Alexander Kuznetsov Laboratory of Herbarium, National Research Tomsk State University, Tomsk, Russia
  • Hiroshi Ikeda The University Museum, The University of Tokyo, Tokyo, Japan
  • Andrey Erst Laboratory of Herbarium, Central Siberian Botanical Garden, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
Keywords: Agrimonia pilosa, Ledebour, Rosaceae, chromosomes, karyotype, new cytotype, flora of China

Abstract

A new diploid cytotype of Agrimonia pilosa Ledebour (Rosaceae) collected in China has been revealed. Karyotype formula is 2n = 2x = 16 = 14m + 2sm. Previously, chromosome numbers in A. pilosa established by other researchers were 2n = 28; 56; 70 with basic chromosome number x = 7. All the other members of genus Agrimonia Linnaeus have the same basic chromosome number. In the meanwhile, some members of fam. Rosaceae have different basic chromosome numbers: x = 8 (e.g., in genera Amygdalus L., Aphanes L., Cerasus Mill., etc.), x = 9 (e.g., in genera Adenostoma Hook. & Arn., Chamaebatia Benth., etc.), x = 17 (e.g., in genera Amelanchier Medik., Chaenomeles Lindl., etc.). We suppose that the new basic chromosome number x = 8 was revealed in Agrimonia pilosa collected in China.

Author Biographies

Elizaveta Mitrenina, Laboratory of Herbarium, National Research Tomsk State University, Tomsk, Russia

Laboratory of Herbarium

Mikhail Skaptsov, South-Siberian Botanical Garden, Altai State University, Barnaul, Russia

South-Siberian Botanical Garden

Maksim Kutsev, South-Siberian Botanical Garden, Altai State University, Barnaul, Russia

South-Siberian Botanical Garden

Hiroshi Ikeda, The University Museum, The University of Tokyo, Tokyo, Japan

The University Museum

Andrey Erst, Laboratory of Herbarium, Central Siberian Botanical Garden, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia

1. Laboratory of Herbarium, 2. Laboratory of Herbarium

References

Angelo R, Boufford DE. 2012. Atlas of the flora of New England: Rosaceae. Phytoneuron. 81:1–56. ¬
Altinordu F, Peruzzi L, Yu Y, He X. 2016. A tool for the analysis of chromosomes: KaryoType. Taxon. 65(3):586–592.
Bukovsky M, Blanarik P. 1994. Immunomodulative effects of ethanolic-aqueous extracts of Herba agrimoniae, Flos chamomillae and Flos calendulae cum calyce. Farm Obz. 63(4):149–156.
Chen L, Kang YH. 2014. Antioxidant activities of Agrimonia pilosa Ledeb: in vitro comparative activities of its different fractions. Korean J Plant Res. 27(6):642–649.
Chen ZJ, Ni Z. 2006. Mechanisms of genomic rearrangements and gene expression changes in plant polyploids. Bioessays. 28:240–252.
Chung KS. 2008. A systematic study of genus Agrimonia (Rosaceae). Doctoral Dissertation. University of Oklahoma, Norman.
Chung, KS, Hoang N, Elisens W, Un Oh B. 2012. Phylogenetic implication of seed coat sculpturing in subtribe Agrimoniinae (Rosaceae). Korean J Pl Taxon. 42(4):247–252.
Escudero M, Martín-Bravo S, Mayrose I, Fernández-Mazuecos M, Fiz-Palacios O, Hipp AL, Pimentel M, Jiménez-Mejías P, Valcárcel V, Vargas P et al. 2014. Karyotypic changes through dysploidy persist longer over evolutionary time than polyploid changes. PLoS ONE. 9(1):e85266.
Doležel J, Doleželova M, Novak FJ. 1994. Flow cytometric estimation of nuclear DNA amount in diploid bananas (Musa acuminata and M. balbisiana). Biol Plant. 36:351–357.
Giachetti D, Taddei E, Taddei I. 1986. Diuretic and urisurica of Agrimonia eupatoria L. Boll Soc Ital Biol Sper. 62(6):705–711.
Gustafson JP, Bennett MD. 1982. The effect of telomeric heterochromatin from Secale cereale on Triticale (x Triticosecale). I. The influence of the loss of several blocks of telomeric heterochromatin on early endosperm development and kernel characteristics at maturity. Can J Genet Cytol. 24:83–92.
Ikeda H, Hand K, Wu SK, Ohba H. 2006. A Revision of the genus Spenceria Trimen (Rosaceae). J Jpn Bot. 81(3):154–167.
Iwatsubo Y, Mishima M, Naruhashi N. 1993. Chromosome studies of Japanese Agrimonia (Rosaceae). Cytologia. 58:453–461.
Kimber G, Riley R. 2011. The relationships of the diploid progenitors of hexaploid wheat. Can J Genet Cytol. 5:83–88.
Kline GJ, Sørensen P. 2008. A Revision of Agrimonia (Rosaceae) in North and Central
America. Brittonia. 60(1):11–33.
Kubešová M, Moravcová L, Suda J, Jarošík V, Pyšek P. 2010. Naturalized plants have smaller genomes than their non-invading relatives: a flow cytometric analysis of the Czech alien flora. Preslia. 82:81–96.
Kuczmannová A, Balažová A, Račanská E, Kameníková M, Fialová S, Majerník J, Nagy M, Gál P, Mučaji P. 2016. Agrimonia eupatoria L. and Cynara cardunculus L. Water infusions: comparison of anti-diabetic activities. Molecules. 21(5):564.
Kumar P, Rana PK, Himshikha, Singhal VK, Gupta RC. 2014. Chromosome numbers, characterization of chromosomal pairing during meiosis, origin and natural propagation in polyploidy cytotypes (4x, 5x and 6x) of Agrimonia eupatoria L. (Rosaceae) in Northwest Himalayas (India). Protoplasma. 251(4):781–795.
Kwon DH, Kwon HY, Kim HJ, Chang EJ, Kim MB, Yoon SK, Song EY, Yoon DY, Lee YH, Choi IS et al. 2005. Inhibition of hepatitis B virus by an aqueous extract of Agrimonia eupatoria L. Phytother Res. 19:355–358.
Leitch IJ, Bennett MD. 2004. Genome downsizing in polyploid plants. Biol J Linn Soc. 82(4):651–663.
Levan A, Fredgam K, Sandberg A. 1964. Nomenclature for centrometric position of chromosomes. Hereditas. 52:201–220.
Li CL, Ikeda H, Ohba H. 2003. Agrimonia L. In: Wu ZY, Raven PH, Hong DY, editors. Flora of China. Rosaceae, Vol. 9. Beijing, China: Science Press, pp. 384–387.
Matzk F, Meister A, Brutovská R, Schubert I. 2001. Reconstruction of reproductive diversity in Hypericum preforatum L. opens novel strategies to manage apomixis. Plant J. 26(3):275–282.
Miyamoto K, Kishi N, Koshiura R. 1987. Antitumor effect of agrimoniin, a tannin of Agrimonia pilosa Ledeb., on transplantable rodent tumors. Jpn J Pharmacol. 43(2):187–195.
Muruzović MŽ, Mladenović KG, Stefanović OD, Vasić SM, Čomić LR. 2016. Extracts of Agrimonia eupatoria L. as sources of biologically active compounds and evaluation of their antioxidant, antimicrobial, and antibiofilm activities. J Food Drug Anal. 24(3):539–547.
Park EJ, Oh H, Kang TH, Sohn DH, Kim YC. 2004. An isocoumarin with hepatoprotective activity in Hep G2 and primary hepatocytes from Agrimonia pilosa. Arch Pharm Res. 27(9):944–946.
Potter D, Eriksson T, Evans RC, Oh S, Smedmark JEE, Morgan DR, Kerr M, Robertson KR, Arsenault M, Dickinson TA et al. 2007. Phylogeny and classification of Rosaceae. Pl Syst Evol. 266(1–2):5–43.
Ramsey J, Ramsey TS. 2014. Ecological studies of polyploidy in the 100 years following its discovery. Philos Trans R Soc Lond B Biol Sci. 369(1648):1–20.
Rice A, Glick L, Abadi Sh, Einhorn M, Kopelman NM, Salman-Minkov A, Mayzel J, Chay O, Mayrose I. 2015. The Chromosome Counts Database (CCDB) – a community resource of plant chromosome numbers. New Phytol. 206(1):19–26.
Shaked H, Kashkush K, Ozkan H, Feldman M, Levy AA. 2001. Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in wheat. Plant Cell. 13:1749–1759.
Skaptsov MV, Smirnov SV, Kutsev MG, Shmakov AI. 2016. Problems of a standardization in plant flow cytometry. Turczaninowia. 19(3):120–122.
Smirnov YA. 1968. Uskorennyi metod issledovaniya somaticheskykh khromosom plodovykh [Accelerated method for studying somatic chromosomes in fruit trees, in Russian]. Tsitologia 10(12):1601–1602.
Song K, Lu P, Tang K, Osborn CT. 1995. Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution. Proc Natl Acad Sci USA. 92:7719–7723.
Stebbins GL. 1971. Chromosomal evolution in higher plants. London: Arnold.
Swanston-Flatt S, Day C, Bailey C. 1990. Traditional plant treatments for diabetes. Studies in normal and streptozotocin diabetic mice. Diabetologia. 33:462–464.
Tang L, Fu L, Lu Ch, Hou X, Shan W, Zhan Zh. 2017. New cytotoxic phloroglucinol derivatives from Agrimonia pilosa. Fitoterapia. 118:69–72.
Xiong Z, Gaeta RT, Pires JC. 2011. Homoeologous shuffling and chromosome compensation maintain genome balance in resynthesized allopolyploid Brassica napus. Proc Natl Acad Sci USA. 108:7908–7913.
Zenil-Ferguson R, Ponciano JM, Burleigh JG. 2016. Evaluating the role of genome downsizing and size thresholds from genome size distributions in angiosperms. Am J Bot.103 (7):1175–1186.
Published
2020-03-13
How to Cite
Mitrenina, E., Skaptsov, M., Kutsev, M., Kuznetsov, A., Ikeda, H., & Erst, A. (2020). A A new diploid cytotype of Agrimonia pilosa (Rosaceae). Caryologia. International Journal of Cytology, Cytosystematics and Cytogenetics, 73(1). https://doi.org/10.13128/caryologia-170
Section
Articles