Molecular classification of Barbeyaceae (Barbeya oleoides Schweinf.) using four different DNA barcodes


  • Fatima Omari Alzahrani Department of Biology, Faculty of Science, Al-Baha University, Al-Baha
  • Sami Al-Robai Department of Biology, Faculty of Science, Al-Baha University, Al-Baha



DNA barcoding, phylogenetic analysis, ITS2, rbcL, matK, trnH-psbA


Despite many efforts to determine the phylogenetic relationship between Barbeyaceae and other families of Rosales, the sister relationship of this family has remained unclear. Barbeya oleoides, which is currently the only species in the family Barbeyaceae, and native to Somalia, Ethiopia, and the Arabian Peninsula were collected from Wadi Turbah Zahran northwestern of Al-Baha City, southwestern Saudi Arabia (20°14’N, 41°15’E). To study the sister relationship of Barbeyaceae and the other families of Rosales, the complete chloroplast sequences were used for phylogenetic analysis. In addition, four standard DNA barcodes (the internal transcribed spacer 2 (ITS2), ribulose 1,5-biphosphate carboxylase (rbcL), maturase K (matk), the intergenic spacer region (trnH-psbA)) were used to test for their quality in identifying phylogenetic relationship of the studied families. Sequence analysis of the complete chloroplast sequences showed that Rosales clade has two subclades and clearly discriminated all families within this order. This is the first report of a partial ITS2 locus sequence in B. oleoides. The partial ITS2, rbcL, matk, and gene sequences discriminate B. oleoides of the Barbeyaceae family from the closely related plant families: Cannabaceae, Rosaceae, Rhamnaceae, Urticaceae, Moraceae, Elaeagnaceae, Dirachmaceae, and Ulmaceae. In contrast, the partial trnH-psbA sequence of B. oleoides did not show any homology to the available DNA sequence of plant families in GenBank, suggesting that it is more suitable as DNA barcode for variations within one species.


Download data is not yet available.


Aboul-Maaty, N.A.F., Oraby, H.A.S., 2019. Extraction of high-quality genomic DNA from different plant orders applying a modified CTAB-based method. Bull. Natl Res. Cent. 43, 1–10.

Ahmed, B., Al-Rehaily, A.J., Mossa, J.S., 2002. Barbeyol: A NewPhenolic indane Type Component from Barbeya oleoides. Z. Naturforsch. C J. Biosci. 57, 17–20.

Angiosperm Phylogeny Group (APG), 1998. An ordinal classification for the families of flowering plants. Ann. Mo. Bot. Gard. 85, 531–553.

Angiosperm Phylogeny Group (APG), 2003. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Botan. J. Linn. Soc. 141, 399–436.

Angiosperm Phylogeny Group (APG), 2009. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot. J. Linn. Soc. 161, 105–121.

Baka, Z.A.M., 2010. Antifungal activity of six Saudi medicinal plant extracts against five phyopathogenic fungi. Arch. Phytopathol. Plant Prot. 43, 736–743.

CBOL Plant Working Group, 2009. A DNA barcode for land plants. Proc. Natl Acad. Sci. U. S. A. 106, 12794–12797.

Chaudhary, S.A., Al Jowaid, A.A., 1999. Vegetation of the Kingdom of Saudi Arabia. Ministry of Agriculture and Water Kingdom of Saudi Arabia 1, 222–223.

Chen, S., Yao, H., Han, J., Liu, C., Song, J., Shi, L., Zhu, Y., Ma, X., Gao, T., Pang, X., Luo, K., Li, Y., Li, X., Jia, X., Lin, Y., Leon, C., 2010. Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLOS ONE. 5, e8613.

China Plant, B.O.L., 2011. Group, Li DZ, Gao LM, Li HT, Wang H, Ge XJ, et al. Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants. Proc Natl Acad Sci USA, 108, pp.19641-19646.

Dickison, W.C., Sweitzer, E.M., 1970. Morphology and relationships of Barbeya oleoides. Am. J. Bot. 57, 468–476.

Do HDK, Kim JS, Kim J. 2013. Comparative genomics of four Liliales families inferred from the complete chloroplast genome sequence of Veratrum patulum O. Loes.(Melanthiaceae). Gene 530(2):229-235.

Fazekas, A.J., Burgess, K.S., Kesanakurti, P.R., Graham, S.W., Newmaster, S.G., Husband, B.C., Percy, D.M., Hajibabaei, M., Barrett, S.C.H., 2008. Multiple multilocus DNA barcodes from the plastid genome discriminate plant species equally well. PLOS ONE. 3, e2802.

Felsenstein, J., 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution. 39, 783–791.

Jukes, T.H., Cantor, C.R., 1969. Evolution of protein molecules, in: Munro, H.N. (Ed.), Mammalian Protein Metabolism. Academic Press, New York, pp. 21–132.

Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular biology and evolution 30(4):772-780.

Khojah, A.A., Padilla-González, G.F., Bader, A., Simmonds, M.J.S., Munday, M., Heinrich, M., 2021. Barbeya oleoides leaves extracts: In vitro carbohydrate digestive enzymes inhibition and phytochemical characterization. Molecules. 26, 6229.

Kress, W.J., Erickson, D.L., 2007. A two-locus global DNA barcode for land plants: The coding rbcL gene complements the non-coding trnH-psbA spacer region. PLoS One. 2, e508.

Kress, W.J., Erickson, D.L., Swenson, N.G., Thompson, J., Uriarte, M., Zimmerman, J.K., 2010. Advances in the use of DNA barcodes to build a community phylogeny for tropical trees in a Puerto Rican Forest Dynamics Plot. PLOS ONE. 5, e15409.

Kress, W.J., Wurdack, K.J., Zimmer, E.A., Weigt, L.A., Janzen, D.H., 2005. Use of DNA barcodes to identify flowering plants. Proc. Natl Acad. Sci. U. S. A. 102, 8369–8374.

Lahaye, R., Van Der Bank, M., Bogarin, D., Warner, J., Pupulin, F., Gigot, G., Maurin, O., Duthoit, S., Barraclough, T.G., Savolainen, V., 2008. DNA barcoding the floras of biodiversity hotspots. Proc. Natl Acad. Sci. U. S. A. 105, 2923–2928.

Li, X.W., Yang, Y., Henry, R.J., Rossetto, M., Wang, Y., Chen, S., 2015. Plant DNA barcoding: From gene to genome. Biol. Rev. Camb. Philos. Soc. 90, 157–166.

Liu, J., Möller, M., Gao, L.M., Zhang, D.Q., Li, D.Z., 2011. DNA barcoding for the discrimination of Eurasian yews (Taxus L., Taxaceae) and the discovery of cryptic species. Mol. Ecol. Resour. 11, 89–100.

Moore MJ, Bell CD, Soltis PS, Soltis DE. 2007. Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms. Proceedings of the National Academy of Sciences 104(49):19363-19368.

Muhammad, S., Siddiqui, M.F., 2022. Taxonomic reaffirmation of some members of family Cannabaceae, Moraceae, Rhamnaceae, Rosaceae and Urticaceae of order Rosales using DNA bar-coding markers. Pak. J. Bot. 54, 231–241.

Namazi, A.A., Al-Khulaidi, A.W.A., Algarni, S., Al-Sagheer, N.A., 2021. Natural plant species inventory of hotspot areas in Arabian Peninsula: Southwest Al-Baha region, Saudi Arabia. Saudi J. Biol. Sci. 28, 3309–3324.

Newmaster, S.G., Fazekas, A.J., Steeves, R.A.D., Janovec, J., 2008. Testing candidate plant barcode regions in the Myristicaceae. Mol. Ecol. Resour. 8, 480–490.

Pang, X., Song, J., Zhu, Y., Xu, H., Huang, L., Chen, S., 2011. Applying plant DNA barcodes for Rosaceae species identification. Cladistics. 27, 165–170.

PLoS ONE 2: e508

Rana, T.S., Ranade, S.A., 2009. The enigma of monotypic taxa and their taxonomic implications. Curr. Sci. 96.

Richardson JE, Fay MF, Cronk QC, Bowman D, Chase MW. 2000a. A phylogenetic analysis of Rhamnaceae using rbcL and trnL‐F plastid DNA sequences. American Journal of Botany 87(9):1309-1324.

Richardson JE, Fay MF, Cronk QC, Bowman D, Chase MW. 2000b. A phylogenetic analysis of Rhamnaceae using rbcL and trnL‐F plastid DNA sequences. American Journal of Botany 87(9):1309-1324.

Sarwar, A.K.M.G., Araki, H., 2010. Monotypic taxa, their taxonomic implications and conservation needs in Bangladesh. Proc. of International Conference on Environmental Aspects of Bangladesh. Japan, Sept. 2010, (p. ICEAB10).

Savolainen V, Fay MF, Albach DC, Backlund A, van der Bank M, Cameron KM, Johnson SA, Lledo MD, Pintaud J, Powell M. 2000. Phylogeny of the eudicots: a nearly complete familial analysis based on rbcL gene sequences. Kew Bulletin:257-309.

Schultz, J., Maisel, S., Gerlach, D., Müller, T., Wolf, M., 2005. A common core of secondary structure of the internal transcribed spacer 2 (ITS2) throughout the Eukaryota. RNA. 11, 361–364.

Schultz, J., Wolf, M., 2009. ITS2 sequence-structure analysis in phylogenetics: A how-to manual for molecular systematics. Mol. Phylogenet. Evol. 52, 520–523.

Silvestro D, Michalak I. 2012. raxmlGUI: a graphical front-end for RAxML. Organisms Diversity & Evolution 12:335-337.

Soltis DE, Gitzendanner MA, Soltis PS. 2007. A 567-taxon data set for angiosperms: the challenges posed by Bayesian analyses of large data sets. International journal of plant sciences 168(2):137-157.

Tamura, K., 1992. Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G + C-content biases. Mol. Biol. Evol. 9, 678–687.

Tamura, K., Stecher, G., Kumar, S., 2021. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol., version 11. 38, 3022–3027.

Wang H, Moore MJ, Soltis PS, Bell CD, Brockington SF, Alexandre R, Davis CC, Latvis M, Manchester SR, Soltis DE. 2009. Rosid radiation and the rapid rise of angiosperm-dominated forests. Proceedings of the National Academy of Sciences 106(10):3853-3858.

Whitlock, B.A., Hale, A.M., Groff, P.A., 2010. Intraspecific inversions pose a challenge for the trnH-psbA plant DNA barcode. PLOS ONE. 5, e11533.

Zhang S, Soltis DE, Yang Y, Li D, Yi T. 2011. Multi-gene analysis provides a well-supported phylogeny of Rosales. Molecular phylogenetics and evolution 60(1):21-28.




How to Cite

Omari Alzahrani, F., & Al-Robai, S. (2023). Molecular classification of Barbeyaceae (Barbeya oleoides Schweinf.) using four different DNA barcodes. Caryologia, 76(2), 3–13.