Robertsonian rearrangements in the genome of the azure damselfish, Chrysiptera hemicyanea (Perciformes, Pomacentridae)

Authors

  • Nuntaporn Getlekha Department of Biology, Faculty of Science and Technology, Muban Chombueng Rajabhat University, Ratchaburi Province, 70150, Thailand
  • Kamika Sribenja Department of General Science, Faculty of Science and Technology, Muban Chombueng Rajabhat University, Ratchaburi Province, 70150, Thailand

DOI:

https://doi.org/10.36253/caryologia-3148

Keywords:

azure damselfish, Chromosome, ribosomal DNA, Robertsonian rearrangements

Abstract

Cytogenetic studies on the azure damselfish, Chrysiptera hemicyanea (Weber, 1913), revealed a karyotype with 2n = 31 chromosomes (17 metacentric, 2 submetacentric, and 14 telocentric; FN = 52). The study found Robertsonian polymorphisms, which involve small heterochromatic regions at the centromeres. Nucleolar organizer regions (NORs) were observed near the ends of the long arms on the large metacentric chromosome pair (pair 2). FISH analysis, which detects specific DNA sequences, revealed notable variability in the distribution of ribosomal DNA (5S and 18S rDNAs) along the chromosomes. Specifically, the 18S rDNA was located at the ends of the long arms on the large metacentric chromosomes (pair 2), while the 5S rRNA genes were found near the centromere of another large metacentric chromosome pair (pair 3). The analysis also showed that repetitive DNA sequences (CA)15, (GA)15, and (CAA)10 were spread across the subtelomeric and telomeric regions of various chromosomes. The study suggests that the structure of the karyotype and chromosome number are linked to the Robertsonian rearrangements observed, highlighting their significant role in the evolutionary changes in the karyotype of the genus Chrysiptera.

Downloads

Download data is not yet available.

References

Allen GR, Werner TB. 2002. Coral reef fish assessment in the ‘coral triangle’ of Southeastern Asia. Environ Biol Fishes. 65(2): 209–214. https://doi.org/10.1023/A:1020093012502

Allen GR. 1991. Damselfishes of the World. Mergus Publishers, Melle, Germany.

Amores A. Giles V. Thode G. Alvarez MC. 1990. Adaptative character of a Robertsonian fusion in chromosomes of the fish Gobius paganellus (Pisces, Perciformes). Heredity. 65: 150–155.

Artoni RF, Castro JP, Jacobina UP, Lima-Filho PA, da Costa GWWF, Molina, WF. 2015. Inferring diversity and evolution in fish by means of integrative molecular cytogenetics. The Scientific World Journal, 2015, 365787. https://doi.org/10.1155/2015/365787

Bellwood DR, Wainwright PC. 2002. Chapter 1: the history and biogeography of fishes on coral reels. In: Coral Reef Fishes. Elsevier Science.

Bertollo LAC, Takahashi CS, Moreira-Filho O. 1979. Karyotypic studies of two allopatric populations of the genus Hoplias (Pisces, Erythrinidae). Rev. Bras. Biol. 2: 17–37.

Brum MJI. Galetti PM. 1997. Teleostei ground plan karyo- type. J Comp Biol. 2: 91–102.

Brum MJI, Galetti PM, Corrêa MMO, Aguilar CT. 1992. Multiple Sex chromosomes in South Atlantic fish, Brevoortia aurea, Clupeidae. Braz J Genet. 15: 547–553.

Brum MJI. 1995. Correlation between phylogeny and cytogenetics of teleost fishes. Se. Monogr.-Soc. Bras. Genet. 2: 5–42.

Cioffi MB, Bertollo LAC. 2012. Distribution and evolution of repetitive DNAs in fish. In: Garrido- Ramos MA (Ed), Repetitive DNA. Karger, Genome Dyn. 7: 197–221.

Cioffi MB, Molina WF, Moreira-Filho O, Bertollo LAC. 2011. Chromosomal distribution of repetitive DNA sequences high- lights the independent differentiation of multiple sex chromosomes in two closely related fish species. Cytogenet Genome Res. 134: 295–302.

Crandall ED, Riginos C, Bird CE, Liggins L, Treml E, Beger M, Barber PH, Connolly SR, Cowman PF, DiBattista JD. 2019. The molecular biogeography of the Indo-Pacific: testing hypotheses with multispecies genetic patterns. Global Ecol Biogeogr. 28(7): 943–960. https://doi.org/10.1111/geb.12905.

Doherty PJ, Mather P. Planes S. 1994. Acanthochromis polyacanthus, a fish lacking larval dispersal, has genetically differentiated populations at local and regional scales on the Great Barrier Reef. Mar. Biol. 121: 11–21.

Galetti PM, Aguilar CT, Molina WF. 2000. An overview of marine fish cytogenetics In: Solé-Cava AM, Russo CAM, Thorpe JP, editors. Marine Genetics. Dordrecht: Springer Netherlands 55–62. https://doi.org/10.1007/978-94-017-2184-4_6.

Getlekha N, Cioffi MB, Maneechot N, Bertollo LAC, Supiwong W, Tanomtong A, Molina WF. 2018. Contrasting Evolutionary Paths Among Indo-Pacific Pomacentrus Species Promoted by Extensive Pericentric Inversions and Genome Organization of Repetitive Sequences. Zebrafish. 15(1): 45–54.

Getlekha N, Cioffi MB, Yano CF, Maneechot N, Bertollo LAC, Supiwong W, Tanomtong A, Molina WF. 2016b. Chromosome mapping of repetitive DNAs in sergeant major fishes (Abudefdufinae, Pomacentridae): a general view on the chromosomal conservatism of the genus. Genetica. 144: 567–576.

Getlekha N, Molina WF, Cioffi MB, Yano CF, Maneechot N, Bertollo LAC, Supiwong W, Tanomtong A. 2016a. Repetitive DNAs highlight the role of chromosomal fusions in the karyotype evolution of Dascyllus species (Pomacentridae, Perciformes). Genetica. 144: 203–211.

Getlekha N, Supiwong W, Yeesin P, Pengseng P, Kasiroek W, Tanomtong A. 2017. Chromosomal Characteristics of the Three-Spot Damselfish, Dascyllus trimaculatus (Perciformes, Pomacentridae) in Thailand. Cytologia. 82: 51–57.

Getlekha N, Tanomtong A. 2020. First Cytogenetic Study of Green Chromis, Chromis viridis (Perciformes, Pomacentridae) by Conventional Staining and Ag-NOR Banding Techniques. CMU J. Nat. Sci. 19(2): 164–175.

Giles V, Thode G, Alvarez MC. 1985. A new Robertsonian fusion in the multiple chromosome polymorphism of a mediterranean population of Gobius paganellus (Gobiidae, Perciformes). Heredity. 55: 255–260.

Gold JR, Amemiya CT, Ellison JR. 1986. Chromosomal heterochromatin differentiation in North American cyprinid fishes. Cytologia. 51: 557–566.

Gosline WA. 1971. Functional Morphology and Classification of Teleostean Fishes. Univ. Press of Hawaii, Honolulu.

Hardie DC, Hebert PD. 2004. Genome-size evolution in fishes. Can J Fish Aquatic Sci. 61(9): 1636–1646. https://doi.org/10.1139/f04-106.

Hotaling S, Kelley JL, Frandsen PB. 2021. Toward a genome sequence for every animal: where are we now? Proc Natl Acad Sci USA. 118(52): e2109019118. https://doi.org/10.1073/pnas.2109019118.

Howell WM, Black A. 1980. Controlled silver staining of nucleolus organizer regions with protective colloidal devel- oper: 1- Step Method. Experientia. 36: 1014–1015.

Kashiwagi E, Takai A, Ojima Y. 2005. Chromosomal distribution of constitutive heterochromatin and nucleolus organizer regions in four dascyllus fishes (Pomacentridae, Perciformes). Cytologia. 70(3): 345–349. https://doi.org/10.1508/ cytologia.70.345.

Kasiroek W, Luangoon N, Getlekha N, Saowakoon S, Phinrub W, Tanomtong A. 2014. First report on heteromor- phic NORs and chromosome analysis of Rolland’s demoiselle, Chrysiptera rollandi (Perciformes, Pomacentrinae) by conventional and Ag-NOR staining techniques. Cytologia. 79: 1–10.

King M. 1987. Chromosomal rearrangements, speciation and the theoretical approach. Heredity. 59: 1–6.

Kirkpatrick M, Barton N. 2006. Chromosome inversions, local adaptation and speciation. Genetics. 173(1): 419–434. https://doi.org/10.1534/genetics.105.047 985.

Knowlton N, Weith LA, Solórzano LA, Mills DEK, Bermingham E. 1993. Divergence in proteins, mitochondrial DNA and reproductive compatibility across the Isthmus of Panama. Science 260: 1629–1632.

Leis JM, Carson-Ewart BM. 1998. Complex behaviour by coral-reef fish larvae in open-water and near-reef pelagic environments. Environ. Biol. Fisches. 53: 259–266.

Liggins L, Treml EA, Possingham HP, Riginos C. 2016. Seascape features, rather than dispersal traits, predict spatial genetic patterns in codistributed reef fishes. J Biogeogr. 43(2): 256–267. https://doi.org/10.1111/jbi.12647.

Limon J, Roberts MB, Schultz DT, Bernardi G. 2023. The complete mitochondrial genome of Dascyllus trimaculatus. Mitochondrial DNA Part B. 8(1): 105–106. https://doi.org/10.1080/23802359.2022.2161838.

Martinez PA, Zurano JP, Amado TF, Penone C, Betancur-R R, Bidau CJ, Jacobina UP. 2015. Chromosomal diversity in tropical reef fishes is related to body size and depth range. Mol Phylogenet Evol. 93: 1–4. https://doi.org/10.1016/j.ympev.2015.07.002.

Martins C, Galetti PM. 1998. Chromosomal localization of 5S rDNA genes in Leporinus fish (Anostomidae, Characiformes). Genetics and Molecular Biology. 21(2), 205–210. https://doi.org/10.1590/S1415-47571 998000 200007

McCord CL, Nash CM, Cooper W, Westneat MW. 2021. Phylogeny of the damselfishes (Pomacentridae) and patterns of asymmetrical diversification in body size and feeding ecology. PLoS One. 16(10): e0258889. https://doi.org/10.1371/journal.pone.0258889.

Molina WF, Galetti PM. 2004. Karyotypic changes associated to the dispersive potential on Pomacentridae (Pisces, Perciformes). J. Exp. Mar. Biol. Ecol. 309: 109–119.

Molina WF, Galetti PM. 2002. Robertsonian rearrangements in the reef fish Chromis (Perciformes, Pomacentridae) involving chromosomes bearing 5S rRNA genes. Genet. Mol. Biol. 25: 373–377.

Molina WF, Maia-Lima FA, Affonso PRAM. 2002. Divergence between karyotypical pattern and speciation events in Serranidae fish (Perciformes). Caryologia. 55: 299–305.

Molina WF, Martinez PA, Bertollo LAC, Bidau CJ. 2014a. Evidence for meiotic drive as an explanation for karyotype changes in fishes. Mar Genomics. 15: 29–34.

Molina WF, Martinez PA, Bertollo LAC, Bidau CJ. 2014b. Preferential accumulation of sex and Bs chromosomes in biarmed karyotypes by meiotic drive and rates of chromosomal changes in fishes. An Acad Bras Ciênc. 86(4): 1801–1812.

Molina WF. 2000. Analysis of genetic diversity in Pomacentridae (Perciformes) through the combined use of cytogenetics, molecular markers and multivariate morphometry. Ph.D. Thesis. Universidade Federal de São Carlos, São Carlos.

Moraes RLR, Bertollo LAC, Marinho MMF, Yano CF, Hatanaka T, Barby FF. 2017. Evolutionary relationships and cytotaxonomy considerations in the genus Pyrrhulina (Characiformes, Lebiasinidae). Zebrafish. 14(6): 536–546.

Moreira-Filho O, Bertollo LAC. 1991. Astyanax scabripinnis (Pisces, Characidae): a species complex. Rev. Bras. Genet. 14: 331–357.

Ohno, S. (1974). Protochordata, Cyclostomata, and Pisces. In: Animal Cytogenetics, Vol. 4, Chordata 1, pp. 1-92. Born-traeger, Berlin.

Ojima Y, Kashiwagi E. 1981. Chromosomal evolution associated with Robertsonian fusion in the genus Dascyllus (Chromininae, Pisces). Proc Jpn Acad. 57b: 368.

Ojima Y. 1983. Fish cytogenetics. In: Sharma AK and Sharma A (eds) Chromosomes in evolution of eukaryotic groups. CRC Press, Boca Raton.

Roberts MB, Schultz DT, Gatins R, Escalona M, Bernardi, G. 2023. Chromosome-level genome of the three-spot damselfish, Dascyllus trimaculatus. G3. 13(4): jkac339

Robitzch VSN, Lozano-Cortés D, Kandler NM, Salas E, Berumen ML. 2016. Productivity and sea surface temperature are correlated with the pelagic larval duration of damselfishes in the Red Sea. Mar Pollut Bull. 105(2): 566–574. https://doi.org/10.1016/j.marpolbul.2015.11.045.

Rossi AR, Crosetti D, Gornung E, Sola L. 1996. Cytogenetic analysis of global populations of Mugilcephalus (striped mullet) by different staining techniques and fluorescent in situ hybridization. Heredity. 76: 77–82.

Saenjundaeng P, Kaewmad P, Supiwong W, Pinthong K, Pengseng P, Tanomtong A. 2018. Karyotype and characteristics of nucleolar organizer regions in longfin carp, Labiobarbus leptocheilus (Cypriniformes, Cyprinidae). Cytologia. 83(3): 265–269.

Saenjundaeng P, Supiwong W, Sassi FMC, Bertollo LAC, Rab P, Kretschmer R. 2020. Chromosomes of Asian cyprinid fishes: Variable karyotype patterns and evolutionary trends in the genus Osteochilus (Cyprinidae, Labeoninae,“Osteochilini”). Genet. Mol. Biol. 43: e20200195.

Santos ÉW, Cioffi MB, Costa GWWF, Amorim KDJ, Oliveira VCS, Bertollo LAC, Molina WF. 2024. The diploid number decrease in cardinalfishes (Apogonidae, Kurtiformes): Chromosomal rearrangements and related biological features. The Nucleus. 67, 419–430. https://doi.org/10.1007/ s13237-023-00438-2

Salas EM, Hobbs JA, Bernal MA, Simison WB, Berumen ML, Bernardi G, Rocha LA. 2020. Distinct patterns of hybridization across a suture zone in a coral reef fish (Dascyllus trimaculatus). Ecol Evol. 10(6): 2813–2837. https://doi.org/10.1002/ece3.6068.

Sassi FMC, Oliveira EA, Bertollo LAC, Nirchio M, Hatanaka T, Marinho MMF. 2019. Chromosomal evolution and evolutionary relationships of Lebiasina species (Characiformes, Lebiasinidae). Int. J. Mol. Sci. 20(12): 2944.

Shulman MA, Bermingham E. 1995. Early life histories, ocean currents, and the population genetics of Caribbean reef fishes. Evolution. 49: 897–910.

Sribenja K, Getlekha N. 2024a. The chromosomal distribution of ribosomal DNA and repetitive DNAs in the genome of the red cheek barb, Systomus rubripinnis (Valenciennes, 1842). The Nucleus. 67(2), https://doi.org/10.1007/s13237-024-00504-3.

Sribenja K, Getlekha N. 2024b. Mapping of five classes of repetitive DNAs and microsatellite repeats in the genome of the Rainbow Shark, Epalzeorhynchos frenatum (Fowler, 1934). Caryologia. 77(2): 57-64. https://doi.org/10.36253/caryologia-2596

Sumner AT. 1972. A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res. 75: 304–306.

Takai A, Ojima Y. 1988. Chromosomal distribution of C-banded heterochromatin in cyprinid fishes. Proc. Japan Acad. 64B: 49–52.

Takai A, Ojima Y. 1995. Chromosome evolution associated with Robertsonian rearrangements in Pomacentrid fish (Perciformes). Cytobios. 84: 103–110.

Takai A, Ojima Y. 1987. Comparative studies of karyotypes and distribution of nucleolus organizer regions in Pomacentrid fish. Proc Jpn Acad. 63B: 17–20.

Takai A, Ojima Y. 1991. Comparative studies of karyotypes and distributions of nucleolus organizer regions in pomacentrid fish. Cytobios. 65: 199–205.

Takai A, Ojima Y. 1999. Constitutive heterochromatin distribution in the chromosomes of pomacentrid fishes (Perciformes). Cytologia. 64: 87–91.

Takai A. 2012. Chromosomal distribution of C-band-positive heterochromatin in eight species of Pomacentridae (Perciformes). Chromosome Science. 15: 39–42.

Tang KL, Stiassny MLJ, Mayden RL, DeSalle R. 2021. Systematics of damselfishes. Ichthyol Herpetol. 109(1): 258–318. https://doi.org/10.1643/i2020105.

Vitturi R. Catalano E. 1989. Multiple chromosome polymorphism in the Gobiid fish Gobius nigerjozo L. 1758 (Pisces, Gobiidae). Cytologia. 54: 23–235.

White MJD. 1973. Animal Cytology and Evolution. Cambridge University Press, Cambridge.

Yano CF, Poltronieri J, Bertollo LAC, Artoni RF, Liehr T, Cioffi MB. 2014. Chromosomal mapping of repetitive DNAs in Triportheus trifurcatus (Characidae, Characiformes): insights into the differentiation of the Z and W chromosomes. PLoS One. 9(3): e90946.

Yuan Z, Liu S, Zhou T, Tian C, Bao L, Dunham R, Liu Z. 2018. Comparative genome analysis of 52 fish Species suggests differential associations of repetitive elements with their living aquatic environments. BMC Genomics 19(1): 141. https://doi.org/10.1186/s12864-018-4516-1.

Yüksel E, Gaffaroglu M. 2008. The analysis of nucleolar organizer regions in Chalcalburnus mossulensis (Pisces: Cyprinidae). J. fish. Sci. 2(4): 587–591.

Zhang H, Song L, Wang X, Cheng H, Wang C, Meyer CA, Liu T, Tang M, Aluru S, Yue F. 2021. Fast alignment and preprocessing of chromatin profiles with chromap. Nat Commun. 12(1): 6566. https://doi.org/10.1038/s41467-021-26865-w.

Downloads

Published

2025-07-15

How to Cite

Getlekha, N., & Sribenja, K. (2025). Robertsonian rearrangements in the genome of the azure damselfish, Chrysiptera hemicyanea (Perciformes, Pomacentridae). Caryologia, 77(4), 33–42. https://doi.org/10.36253/caryologia-3148

Issue

Section

Articles