No. SI1 (2025): Special Issue
Essays

Hyperlocal Knitting: Building Sustainable Networks with 3D Seamless Technology

Patricia Chircop
University of Technology Sydney

Published 14-07-2025

Keywords

  • Knit Design,
  • Design 4.0,
  • Circular Economy,
  • Fashion Industry Transformation,
  • zero-waste design

How to Cite

Chircop, P. (2025). Hyperlocal Knitting: Building Sustainable Networks with 3D Seamless Technology. Fashion Highlight, (SI1), 120–129. https://doi.org/10.36253/fh-3129

Abstract

Traditional manufacturing models are increasingly unsustainable and vulnerable to environmental and geopolitical challenges. Industry 4.0 principles integrated with cutting-edge 3D knit technology form the basis for the proposed Future Factory Network (FFN). The FFN enables localised production on a global scale, where the physical location of designers and consumers becomes irrelevant; aligning with circular economy principles and offering extensive design options. Produced with near-zero waste, minimal post-processing, and highly customisable, 3D knit products offer an ideal solution for sustainable manufacturing.

This research will develop and test a novel manufacturing model that leverages existing resources to adopt slow fashion principles within a scalable, efficient, and agile framework. The FFN model aims to enhance brand sustainability and circular economies through smart manufacturing systems and advanced 3D knit technology. Whilst this model addresses manufacturing processes, the behavioural shifts needed among consumers and stakeholders are intrinsic issues beyond the scope of this research.

References

  1. Aakko, M., & Koskennurmi-Sivonen, R. (2013). Designing Sustainable Fashion: Possibilities and Challenges. Research Journal of Textile and Apparel, 17(1), 13–22. https://doi.org/10.1108/RJTA-17-01-2013-B002
  2. Adel, A. (2022). Future of industry 5.0 in society: Human-centric solutions, challenges and prospective research areas. Journal of Cloud Computing, 11(1), 40. https://doi.org/10.1186/s13677-022-00314-5
  3. Ahuett-Garza, H., & Kurfess, T. (2018). A brief discussion on the trends of habilitating technologies for Industry 4.0 and Smart manufacturing. Manufacturing Letters, 15, 60–63. https://doi.org/10.1016/j.mfglet.2018.02.011
  4. Alibi, H., Fayala, F., Bhouri, N., Jemni, A., & Zeng, X. (2013). An optimal artificial neural network system for designing knit stretch fabrics. Journal of the Textile Institute, 104(7), 766–783. https://doi.org/10.1080/00405000.2012.756134
  5. Banjanović-Mehmedović, L., & Mehmedović, F. (2022). Intelligent Manufacturing Systems Driven by Artificial Intelligence in Industry 4.0: In I. R. Management Association (Ed.), Research Anthology on Cross-Disciplinary Designs and Applications of Automation (pp. 406–428). IGI Global. https://doi.org/10.4018/978-1-6684-3694-3.ch021
  6. Basu, S. K., & Gupta, M. (2019). Knitted Footwear Technology – An approach towards Sustainability. 6(1).
  7. Cataldi, C. (2013). Slow fashion: Tailoring a strategic approach for sustainability. In Sustainability in Fashion and Textiles: Values, Design, Production and Consumption. Greenleaf Publishing. https://doi.org/10.9774/GLEAF.978-1-909493-61-2_3
  8. Cerulo, B., Papile, F., Motta, M., Marinelli, A., Maria Conti, G., & Del Curto, B. (2022). 3D knitting for upholstery: Guidelines to design at the interface of sustainable fashion and furniture. 13th International Conference on Applied Human Factors and Ergonomics (AHFE 2022). https://doi.org/10.54941/ahfe1001547
  9. Choi, P. (2005). THREE DIMENSIONAL SEAMLESS GARMENT KNITTING ON V-BED FLAT KNITTING MACHINES. 4(3).
  10. Davis, S. (1987). Future Perfect. Addison-Wesley.
  11. El Naqa, I., Li, R., & Murphy, M. J. (Eds.). (2015). Machine Learning in Radiation Oncology: Theory and Applications. Springer International Publishing. https://doi.org/10.1007/978-3-319-18305-3
  12. European Commission. Directorate General for Research and Innovation. (2020). Enabling Technologies for Industry 5.0: Results of a workshop with Europe’s technology leaders. Publications Office. https://data.europa.eu/doi/10.2777/082634
  13. Giglio, A., Paoletti, I., & Conti, G. M. (2022). Three-Dimensional (3D) Textiles in Architecture and Fashion Design: A Brief Overview of the Opportunities and Limits in Current Practice. Applied Composite Materials, 29(1), 187–204. https://doi.org/10.1007/s10443-021-09932-9
  14. Grosso, C., & Boselli, R. (2022). FOSTERING TRANSITION TO INDUSTRY 5.0 FOR HANDCRAFT FASHION SMEs: THE CASE OF FUTURE FASHION MADE TO ORDER SUITE.
  15. Hassani, H., Silva, E. S., Unger, S., TajMazinani, M., & Mac Feely, S. (2020). Artificial Intelligence (AI) or Intelligence Augmentation (IA): What Is the Future? AI, 1(2), 143–155. https://doi.org/10.3390/ai1020008
  16. Ivanov, D. (2023). The Industry 5.0 framework: Viability-based integration of the resilience, sustainability, and human-centricity perspectives. International Journal of Production Research, 61(5), 1683–1695. https://doi.org/10.1080/00207543.2022.2118892
  17. Joshi, N. (2019, June 19). 7 Types Of Artifical Intelligence. Forbes Online. https://www.forbes.com/sites/cognitiveworld/2019/06/19/7-types-of-artificial-intelligence/?sh=39f2947f233e
  18. Kazancoglu, Y., Mangla, S. K., Berberoglu, Y., Lafci, C., & Madaan, J. (2023). Towards Industry 5.0 Challenges for The Textile and Apparel Supply Chain for The Smart, Sustainable, and Collaborative Industry in Emerging Economies. Information Systems Frontiers. https://doi.org/10.1007/s10796-023-10430-5
  19. Khan, M. I., Wang, L., & Padhye, R. (2023). Textile waste management in Australia: A review. Resources, Conservation & Recycling Advances, 18, 200154. https://doi.org/10.1016/j.rcradv.2023.200154
  20. Langvik, K. S. (2022). The future of production is hyperlocal and open source.
  21. Li, L., Sun, P., & Lu, J. (2021). Distributed Manufacturing in Knitting Industry. 2021 IEEE 1st International Conference on Digital Twins and Parallel Intelligence (DTPI), 1–4. https://doi.org/10.1109/DTPI52967.2021.9540079
  22. Maddikunta, P. K. R., Pham, Q.-V., B, P., Deepa, N., Dev, K., Gadekallu, T. R., Ruby, R., & Liyanage, M. (2022). Industry 5.0: A survey on enabling technologies and potential applications. Journal of Industrial Information Integration, 26, 100257. https://doi.org/10.1016/j.jii.2021.100257
  23. Maffei, S., & Villari, B. (2011). SERVICE DESIGN AND KNITTING PRODUCTION: AN INNOVATION MODEL FOR SUSTAINABLE SERVICES DEVELOPMENT.
  24. Mahbub, R., Wang, L., & Arnold, L. (2014). Design of knitted three-dimensional seamless female body armour vests. International Journal of Fashion Design, Technology and Education, 7(3), 198–207. https://doi.org/10.1080/17543266.2014.956152
  25. Maiti, S., Maity, S., Pandit, P., Roy Maulik, S., & Singha, K. (2022). 20—Sustainability analysis for knitting process and products. In S. Maity, S. Rana, P. Pandit, & K. Singha (Eds.), Advanced Knitting Technology (pp. 657–671). Woodhead Publishing. https://doi.org/10.1016/B978-0-323-85534-1.00001-5
  26. Manning, C. (2020, September). Artificial Intelligence Definitions. Stanford University. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://hai.stanford.edu/sites/default/files/2020-09/AI-Definitions-HAI.pdf
  27. McCann, J., Albaugh, L., Narayanan, V., Grow, A., Matusik, W., Mankoff, J., & Hodgins, J. (2016). A compiler for 3D machine knitting. ACM Transactions on Graphics, 35(4), 1–11. https://doi.org/10.1145/2897824.2925940
  28. McRobbie, A. (n.d.). British Fashion Design: Rag Trade or Image Industry? Retrieved August 29, 2023, from https://web-s-ebscohost-com.ezproxy.lib.uts.edu.au/ehost/ebookviewer/ebook/bmxlYmtfXzkzNjcxX19BTg2?sid=4ee2fe2c-86a2-4a12-aafd-386ba5ef4e4c@redis&vid=0&format=EK&lpid=acid55&rid=0
  29. Nawaz, N., & Nayak, R. (2015). 14—Seamless garments. In R. Nayak & R. Padhye (Eds.), Garment Manufacturing Technology (pp. 373–383). Woodhead Publishing. https://doi.org/10.1016/B978-1-78242-232-7.00014-X
  30. Ozdamar Ertekin, Z., & Atik, D. (2015). Sustainable Markets: Motivating Factors, Barriers, and Remedies for Mobilization of Slow Fashion. Journal of Macromarketing, 35(1), 53–69. https://doi.org/10.1177/0276146714535932
  31. Pavko Čuden, A. (2022a). 2—Recent developments in knitting technology. In S. Maity, S. Rana, P. Pandit, & K. Singha (Eds.), Advanced Knitting Technology (pp. 13–66). Woodhead Publishing. https://doi.org/10.1016/B978-0-323-85534-1.00020-9
  32. Pavko Čuden, A. (2022b). Knitting towards sustainability, circular economy and Industry 4.0. Applied Research, n/a(n/a), e202200087. https://doi.org/10.1002/appl.202200087
  33. Peterson, J., & Ekwall, D. (2007). PRODUCTION AND BUSINESS METHODS IN THE INTEGRAL KNITTING SUPPLY CHAIN. AUTEX Research Journal, 8.
  34. Peterson, J., Larsson, J., Mujanovic, M., & Mattila, H. (2011). MASS CUSTOMISATION OF FLAT KNITTED FASHION PRODUCTS: SIMULATION OF THE CO-DESIGN PROCESS. AUTEX Research Journal, 11(1), 6–13. https://doi.org/10.1515/aut-2011-110102
  35. Quantis. (2018). Measuring Fashion: Insights from the Environmental Impact of the Global Apparel and Footwear Industries Study. Quantis.
  36. Scheidt, F., Ou, J., Ishii, H., & Meisen, T. (2020). deepKnit: Learning-based Generation of Machine Knitting Code. Procedia Manufacturing, 51, 485–492. https://doi.org/10.1016/j.promfg.2020.10.068
  37. Simonis, K., Gloy, Y.-S., & Gries, T. (2016). INDUSTRIE 4.0—Automation in weft knitting technology. IOP Conference Series: Materials Science and Engineering, 141, 012014. https://doi.org/10.1088/1757-899X/141/1/012014
  38. Singha, K., Maity, S., & Pandit, P. (2022). Use of AI and machine learning techniques in knitting. In Advanced Knitting Technology (pp. 161–180). Elsevier. https://doi.org/10.1016/B978-0-323-85534-1.00021-0
  39. Smith, A., & Moore, R. (2020). Digital Distortion Through Co-creation. Journal of Textile Design Research and Practice, 8(3), 276–297. https://doi.org/10.1080/20511787.2018.1524088
  40. Spencer, D. J. (2001). Knitting Technology: A Comprehensive Handbook and Practical Guide. Elsevier Science & Technology. http://ebookcentral.proquest.com/lib/uts/detail.action?docID=1640151
  41. Stevick, K. (2023). Council Post: Worker Shortage: Overcoming Workforce Challenges In Manufacturing. Forbes. https://www.forbes.com/sites/forbesbusinesscouncil/2023/08/25/worker-shortage-overcoming-workforce-challenges-in-manufacturing/
  42. Sustainability at SHIMA SEIKI. (n.d.). Retrieved February 3, 2024, from https://www.shimaseiki.com/sustainability/
  43. Swanson, C. A., & Lankford, W. M. (1998). Just-in-time manufacturing.
  44. Taylor, J., & Townsend, K. (2014). Reprogramming the hand: Bridging the craft skills gap in 3D/digital fashion knitwear design. Craft Research, 5(2), 155–174. https://doi.org/10.1386/crre.5.2.155_1
  45. Wang, Y., Fu, E. Y., Zhai, X., Yang, C., & Pei, F. (2024). Introduction of Artificial Intelligence. In X. Huang & W. C. Tam (Eds.), Intelligent Building Fire Safety and Smart Firefighting (pp. 65–97). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-48161-1_4
  46. Xie, X., Hong, Y., Zeng, X., Dai, X., & Wagner, M. (2021). A Systematic Literature Review for the Recycling and Reuse of Wasted Clothing. Sustainability, 13(24), 13732. https://doi.org/10.3390/su132413732
  47. Yildirim, P., Birant, D., & Alpyildiz, T. (2018). Data mining and machine learning in textile industry. WIREs Data Mining and Knowledge Discovery, 8(1), e1228. https://doi.org/10.1002/widm.1228
  48. Zizic, M. C., Mladineo, M., Gjeldum, N., & Celent, L. (2022). From Industry 4.0 towards Industry 5.0: A Review and Analysis of Paradigm Shift for the People, Organization and Technology. Energies, 15(14), 5221. https://doi.org/10.3390/en15145221