Just Accepted Manuscripts
Research Articles

Fluorescence Quenching of Aromatic Amino Acids by Rhodium Nanoparticles

Elizaveta Demishkevich
Immanuel Kant Baltic Federal University, Kaliningrad, Russia
Bio
Alexander Zozulya
Immanuel Kant Baltic Federal University, Kaliningrad, Russia
Bio
Andrey Zyubin
Immanuel Kant Baltic Federal University, Kaliningrad, Russia
Bio
Ivan Lyatun
Immanuel Kant Baltic Federal University, Kaliningrad, Russia
Bio
Ilia Samusev
Immanuel Kant Baltic Federal University, Kaliningrad, Russia
Bio

Published 2024-12-13

Keywords

  • Aromatic amino acids,
  • Tyrosine,
  • Tryptophan,
  • Fluorescence Spectroscopy

How to Cite

Demishkevich, E., Zozulya, A., Zyubin, A., Lyatun, I., & Samusev, I. (2024). Fluorescence Quenching of Aromatic Amino Acids by Rhodium Nanoparticles. Substantia. https://doi.org/10.36253/Substantia-3055

Abstract

In this paper, the fluorescence quenching of the aromatic amino acids tyrosine and tryptophan by rhodium nanoparticles has been investigated.The choice of rhodium nanoparticles was determined by the fact that the plasmonic maximum of the nanoparticles and the absorption range of the amino acids are in the UV. The quenching constants and types of quenching were estimated using Stern-Volmer dependencies. The fluorescence intensity of amino acids was found to decrease with nanoparticle concentration, with different types of quenching observed: tryptophan-nanoparticle system showed static quenching, while dual quenching (static and dynamic) occurred in tyrosine-nanoparticle system. Calculation of parameters of quenching efficiency were done: diffusion coefficient, diffusion rate parameter and quenching activation energy. Opportunities to exploit quenching mechanisms to realise optical sensing effects in UV have been shown.

References

  1. S. Basak, K. Chattopadhyay, Phys. Chem. Chem. Phys., 2014, 16, 11139.
  2. M.C. Murphy, I. Rasnik, W. Cheng, T.M. Lohman, T. Ha, Biophysical Journal, 2004,86, 2530–2537
  3. C.A. Royer, Chem. Rev. 2006, 106, 1769–1784
  4. J.T. Vivian, P.R. Callis, Biophysical Journal, 2001, 80, 2093–2109.
  5. A. Biswas, R.K. Swarnkar, B. Hussain, S.K. Sahoo, P.I. Pradeepkumar, G.N. Patwari, R. Anand, J. Phys. Chem. B, 2014, 118, 10035–10042.
  6. A. Ghisaidoobe, S. Chung, IJMS , 2014, 15, 22518–22538.
  7. M. Clerici, G. Colombo, F. Secundo, N. Gagliano, R. Colombo, N. Portinaro, D. Giustarini, A. Milzani, R. Rossi, I. Dalle-Donne, 2014, 52, 166–174.
  8. J.R. Lakowicz, Principles of Fluorescence Spectroscopy, Spinger: Berlin/Heidelberg, Germany, 2006.
  9. Y. Chen, M.D. Barkley, Biochemistry, 1998, 37, 9976–9982.
  10. F.W.J. Teale, Biochemical Journal, 1960, 76, 381–388.
  11. J. Steinhardt, J. Krijn, J.G. Leidy, Biochemistry, 1971, 10, 4005–4015.
  12. R.W. Cowgill, Biochimica et Biophysica Acta (BBA)-Protein Structure, 1968, 168, 417–430.
  13. N.G. Zhdanova, E.G. Maksimov, A.M. Arutyunyan, V.V. Fadeev, E.A. Shirshin, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2017, 174, 223–229.
  14. M.A. Rub, J.M. Khan, A.M. Asiri, R.H. Khan, K., Journal of Luminescence, 2014, 155, 39–46.
  15. R. Li, D. Dhankhar, J. Chen, T.C. Cesario, P.M. Rentzepis, Proc. Natl. Acad. Sci. U.S.A. , 2019, 116, 18822–18826.
  16. E. Demishkevich, A. Zyubin, A. Seteikin, I. Samusev, I. Park, C.K. Hwangbo, E.H. Choi, G.J. Lee, Materials, 2023, 16, 3342.
  17. Y. Jeong, Y.M. Kook, K. Lee, W.-G. Koh, Biosensors and Bioelectronics, 2018, 111, 102–116.
  18. K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J.R. Lakowicz, C.D. Geddes , Current Opinion in Biotechnology, 2005, 16, 55–62.
  19. T. Ribeiro, C. Baleizão, J.P.S. Farinha, Sci Rep, 2017, 7, 2440.
  20. J.-H. Choi, J.-W. Choi, Nano Lett., 2020, 20, 7100–7107.
  21. J. Chen, Y. Jin, N. Fahruddin, J.X. Zhao, Langmuir, 2013, 29, 1584–1591.
  22. B. Della Ventura, M. Gelzo, E. Battista, A. Alabastri, A. Schirato, G. Castaldo, G. Corso, F. Gentile, R. Velotta, ACS Appl. Mater. Interfaces, 2019, 11, 3753–3762.
  23. K. Aslan, S.N. Malyn, C.D. Geddes, J Fluoresc, 2006, 17, 7–13.
  24. K. Aslan, J.R. Lakowicz, C.D. Geddes, Anal Bioanal Chem, 2005, 382, 926–933.
  25. M.H. Chowdhury, K. Ray, S.K. Gray, J. Pond, J.R. Lakowicz, Anal. Chem., 2009, 81, 1397–1403.
  26. J.M. McMahon, G.C. Schatz, S.K. Gray, Phys. Chem. Chem. Phys., 2013, 15, 5415–5423.
  27. Y. Zhang, K. Aslan, M.J.R. Previte, C.D. Geddes, Applied Physics Letters, 2007, 90, 173116.
  28. M.W. Knight, N.S. King, L. Liu, H.O. Everitt, P. Nordlander, N.J. Halas, ACS Nano, 2014, 8, 834–840.
  29. Y. Gutierrez, D. Ortiz, J.M. Sanz, J.M. Saiz, F. Gonzalez, H.O. Everitt, F. Moreno, Opt. Express, 2016, 24, 20621.
  30. Y. Gutiérrez, R. Alcaraz De La Osa, D. Ortiz, J. Saiz, F. González, F. Moreno, Applied Sciences, 2018, 8, 64.
  31. N. Akbay, F. Mahdavi, J.R. Lakowicz, K. Ray, Chemical Physics Letters, 2012, 548, 45–50.
  32. C.-S. Chu, T.W. Sung, Y.L. Lo, Sensors and Actuators B: Chemical, 2013,185, 287–292.
  33. D. Ghosh, N. Chattopadhyay, Journal of Luminescence, 2015, 160, 223–232.
  34. C. Hao, G. Xu, Y. Feng, L. Lu, W. Sun, R. Sun, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2017, 184, 191–197.
  35. K.A. Kang, J. Wang, J.B. Jasinski, S. Achilefu, J Nanobiotechnol, 2011, 9, 16.
  36. P. Anger, P. Bharadwaj, L. Novotny, Phys. Rev. Lett., 2006, 96,113002.
  37. A.M. Queiroz, A.V. Mezacasa, D.E. Graciano, W.F. Falco, J.-C. M’Peko, F.E.G. Guimarães, T. Lawson, I. Colbeck, S.L. Oliveira, A.R.L. Caires, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2016, 168, 73–77.
  38. S. Roy, T.K. Das, J Appl Spectrosc, 2015, 82, 598–606.
  39. B.P. Espósito, A. Faljoni-Alário, J.F.S. De Menezes, H.F. De Brito, R. Najjar, Journal of Inorganic Biochemistry, 1999, 75, 55–61.
  40. M.Z. Bellus, M. Li, S.D. Lane, F. Ceballos, Q. Cui, X.C. Zeng, H. Zhao, Nanoscale Horiz., 2017, 2, 31–36.
  41. S. Kundu, K. Wang, H. Liang, J. Phys. Chem., 2009, 113, 18570–18577.
  42. T. Wakita, H. Yao, Chemical Physics Letters, 2021, 779,138866.
  43. G. Kumar, R.K. Soni, J Raman Spectroscopy, 2022, 53, 1890–1903.
  44. D.L. Dexter, A Theory of Sensitized Luminescence in Solids, The Journal of Chemical Physics, 1953, 21, 836–850.
  45. H.V. Demir, S.V. Gaponenko, Applied Nanophotonics, Cambridge University Press, 2018.
  46. C.S. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N.O. Reich, G.F. Strouse, J. Am. Chem. Soc. 2005, 127, 3115–3119
  47. P.F. Gao, Y.F. Li, C.Z. Huang, TrAC Trends in Analytical Chemistry, 2020, 124, 115805.
  48. S. Rakshit, S.P. Moulik, S.C. Bhattacharya, Journal of Colloid and Interface Science, 2017, 491, 349–357.
  49. T.L. Jennings, J.C. Schlatterer, M.P. Singh, N.L. Greenbaum, G.F. Strouse, Nano Lett., 2006, 6, 1318–1324.
  50. M.P. Singh, G.F. Strouse, J. Am. Chem. Soc, 2010, 132, 9383–9391.
  51. T. Sen, S. Sadhu, A. Patra, Applied Physics Letters, 2007, 91, 043104.
  52. C. Chen, N. Hildebrandt, Resonance energy transfer to gold nanoparticles: NSET defeats FRET, TrAC Trends in Analytical Chemistry 123 (2020) 115748.
  53. C.J. Breshike, R.A. Riskowski, G.F. Strouse, Leaving Förster Resonance Energy Transfer Behind: Nanometal Surface Energy Transfer Predicts the Size-Enhanced Energy Coupling between a Metal Nanoparticle and an Emitting Dipole, J. Phys. Chem. C 117 (2013) 23942–23949.
  54. K. Bolaños, M.J. Kogan, E. Araya, Capping gold nanoparticles with albumin to improve their biomedical properties, IJN Volume 14 (2019) 6387–6406.
  55. W. Bal, M. Sokołowska, E. Kurowska, P. Faller, Binding of transition metal ions to albumin: Sites, affinities and rates, Biochimica et Biophysica Acta (BBA) - General Subjects 1830 (2013) 5444–5455.
  56. H. Iqbal, T. Yang, T. Li, M. Zhang, H. Ke, D. Ding, Y. Deng, H. Chen, Serum protein-based nanoparticles for cancer diagnosis and treatment, Journal of Controlled Release 329 (2021) 997–1022.