Vol. 7 No. 1 (2023)
Research Articles

Training of Future Chemistry Teachers by a Historical / STEAM Approach Starting from the Visit to an Historical Science Museum

Valentina Domenici
Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
Bio

Published 2022-11-08

Keywords

  • High Order Thinking Skills,
  • Education,
  • History of Chemistry,
  • STEM,
  • STEAM,
  • Historical teaching approach,
  • Inquiry-based Learning,
  • Hands-on activities
  • ...More
    Less

How to Cite

Domenici, V. (2022). Training of Future Chemistry Teachers by a Historical / STEAM Approach Starting from the Visit to an Historical Science Museum. Substantia, 7(1), 23–34. https://doi.org/10.36253/Substantia-1755

Abstract

The visit to a scientific historical museum represents a great opportunity for future science teachers to develop educational activities and effective laboratories for high school and first year undergraduate students. In this paper, a pilot educational project experimented in the frame of the course of ‘Fundaments and methods of chemistry education’ held at the University of Pisa (Italy) during the academic year 2019-2020, aimed to train future chemistry teachers, is described. The main steps of the project, from the visit to the Museum ‘Galileo’ in Florence (Italy) to the design of educational hands-on activities by the undergraduate students, are discussed. Emphasis will be given to the role of historical scientific collections, such as the Galilean thermoscopes and other historical thermometers’ collection, in stimulating the creativity and higher order thinking skills.   

References

  1. CEDEFOP. European Guidelines for Validating non-Formal and Informal Learning. Available online: https://www.cedefop.europa.eu/en/events-and-projects/projects/validation-non-formal-and-informal-learning (accessed on 4 July 2022).
  2. V. Domenici, Insegnare e Apprendere Chimica, Mondadori Università, Firenze, 2018, (Third Part). ISBN: 978-88-6184-600-5.
  3. J. K. Gilbert, A. S. Alfonso, Lifelong learning: approaches to increasing the understanding of chemistry by everybody. In “Chemistry Education. Best practices, opportunities and trends”, J. Garcia-Martinez and E. Serrano-Torregrosa (Editors), Wiley-VCH, Weinheim, 2015. ISBN: 978-3-527-33605-0.
  4. G. Hull, K. Schultz, Rev. Educ. Res. 2001, 71, 575–611.
  5. J. H. Falk, L. D. Dierking, Learning from Museums: Visitor Experiences and the Making of Meaning; Alta Mira Press: Walnut Creek, CA, USA, 2000; ISBN: 0742502945.
  6. V. Domenici, J. Chem. Educ. 2008, 85, 1365-1367.
  7. F. Affeldt, S. Tolppanen, M. Aksela, I. Eilks, Chem. Educ. Res. Pract. 2017, 18, 13-25.
  8. L. Campanella, V. Domenici, In La Chimica nei Musei Scientifici e i Musei di Chimica, Domenici, V.; Campanella, L. Editors. Casa Editrice La Sapienza: Roma, Italy, 2014. ISBN: 978-8833394220.
  9. S. Tortorella, A. Zanelli, V. Domenici, Substantia 2019, 3, 39. DOI: 10.13128/Substantia-587
  10. J. B. Velasco, A. Knedeisen, D. Xue, T. L. Vickrey, M. Abebe, M. Stains, J. Chem. Educ. 2016, 93, 1191?1203.
  11. S. Aydin-Gunbatar, A. Tarkin-Celikkiran, E. S. Kutucu, B. Ekiz-Kiran, Chem. Educ. Res. Pract. 2018, 19, 954.
  12. J. Griffin, Sci. Educ. 2004, 81, S59–S70.
  13. B. G. Koehler, L. Y. Park, L. J. Kaplan, J. Chem. Educ. 1999, 76, 1505-1509.
  14. R. C. Mori, A. C. Kasseboehmer, Quimica Nova 2019, 42, 803-811.
  15. H. Cooke, H. L. Dobbs, K. Haxton, F. Parmeggiani, G. Skerratt, J. Chem. Educ. 2021, 98, 1249–1255.
  16. N. H. D. Huri, M. Karpudewan, Chem. Educ. Res. Pract. 2019, 20, 495.
  17. E. Luzzi, V. Ambrogi, G. Filippone, B. Liguori, M.S. De Luna, P. Aprea, J. Chem. Educ. 2021, 98, 1296-1301.
  18. V. Domenici, Educ. Sci. 2022, 12 (1), 30.
  19. H. Gonzalez, J. Kuenzi, Science, Technology, Engineering, and Mathematics (STEM) Education: A Primer. Presentation at Congressional Research Service, CRS Report for Congress, 1st August 2021. Link: https://sgp.fas.org/crs/misc/R42642.pdf (Accessed 28th June 2022).
  20. C. Conradty, S. A. Sotiriou, F. X. Bogner, Educ. Sci. 2020, 10, 70.
  21. J. Jesionkowska, F. Wild, Y. Deval, Educ. Sci. 2020, 10, 198.
  22. C. F. Quigley, D. J. Herro, Sci. Educ. Technol. 2016, 25, 410–426.
  23. E. K. Faulconer, B. Wood, J. C. Griffith, Journal of Science Education and Technology 2020, 29, 340–345.
  24. J. C. Lang, Educ. Theory 2011, 61, 75–96.
  25. P. Mahaffy. J. Chem. Educ. 2006, 83, 1, 49.
  26. V. Talanquer, J. Chem. Educ. 2013, 90, 832-838.
  27. J. Sjo?stro?m, Sci. & Educ. 2013, 22, 1873?1890.
  28. J. Sjo?stro?m, I. Eilks, V. Talanquer. J. Chem. Educ. 2020, 97, 910?915.
  29. J. Mehlich, F. Moser, B. Van Tiggelen, L. Campanella, H. Hopf, Chem. A Eur. J. 2017, 23, 1210-1218.
  30. V. Domenici, J. Chem. Educ. 2020, 97, 2905-2908.
  31. I. Suay-Matallana, J. R. B. Sánchez, J. Chem. Educ. 2017, 94, 133-136.
  32. D. Vesna, V.D. Milanovic, D. D. Trivic, I. Biljana, I. Tomasevic. Res. Sci. Tech. Ed. 2021, in press. Doi: 10.1080/02635143.2021.1985447.
  33. V. D. Milanovic, D. D. Trivic, J. Ed. Teach. 2021, 48, 57-71.
  34. J. C. Powers, ISIS, 2020, 111, 576-581.
  35. V. Domenici, Substantia, 2020, 4, 961. DOI:10.13128/Substantia-961.
  36. G. Boeck, CHEMKON, 2022, in press. Doi: 10.1002/ckon.202200031.
  37. R. Bud, The British Journal for the History of Science 1997, 30, 47-50.
  38. V. Domenici, In La chimica nei musei. Creatività e conoscenza, Domenici, V.; Campanella, L. Editors; Pisa University Press: Pisa, Italy, 2020; pp. 13–26.
  39. A. Basso, M. Alloisio, M. M. Carnasciali, M. Grotti, S. Vicini, Substantia, 2020, 4. https://doi.org/10.13128/Substantia-813.
  40. Link at the web-page of the special didactic project: https://smslab.dcci.unipi.it/progetti-stem.html (Accessed on 13th July 2022).
  41. Link to the Course of “Fondamenti e metodologie didattiche per l’insegnamento della chimica”: https://esami.unipi.it/esami2/programma.php?c=41731&aa=2019&docente=DOMENICI&insegnamento=&sd=0 (Accessed on 13th July 2022).
  42. Link to the e-learning platform of the course in ‘Chemical Education’: https://polo3.elearning.unipi.it/course/view.php?id=3166 (Accessed on 13th July 2022).
  43. Web site of the “Istituto e Museo di Storia della Scienza Museo Galileo”. Available online: https://www.museogalileo.it/en/museum/explore/the-museum-and-its-history.html (Accessed on 13th July 2022).
  44. W. E. K. Middleton, A History of the Thermometer and Its Use in Meteorology; The John Hopkins Press: Baltimore, MD, 1966, pp 3?14.
  45. W. E. K. Middleton, The Experimenters: A Study of the Accademia del Cimento; The Johns Hopkins Press: Baltimore, MD, 1971.
  46. P. Loyson, J. Chem. Edu. 2012, 89, 1095-1096.
  47. C. W. Padgett, L. W., Padgett, M. A. Priest, J. Chem. Educ. 2011, 88, 983-985.
  48. L. Dei, Substantia 2022, 6, 13-23. doi: 10.36253/Substantia-1524.
  49. University of Pisa. Fare Chimica con la luce: Introduzione. Available online: https://bright.dcci.unipi.it/chimica-luce-introduzione.html (Accessed on 13th July 2022).
  50. University of Pisa. Project of the Dipartimento di Chimica e Chimica Industriale: Virtual activities about chemical gardens. Available online: https://bright.dcci.unipi.it/latest-edition/edizione-2020/8-pagine-principali/26-giardini-chimici-2020.html (Accessed on 13th July 2022).
  51. The Open Day (BRIGHT) organized at the Dipartimento di Chimica and Chimica Industriale of the University of Pisa. Available online: https://bright.dcci.unipi.it/programma.html (Accessed on 13th July 2022).
  52. V. Domenici, I. Dierking, Liq. Cryst. Today, 2018, 27, 2-8. Doi:10.1080/1358314X.2018.1438039.
  53. Catalogue of the Museum concerning the room ‘Chemistry and the Public Usefulness of Science’: https://catalogue.museogalileo.it/room/RoomXVII.html (Accessed on 13th July 2022).
  54. C. Guerra, La Chimica nella scuola (CnS), 2012, V, 211-217.
  55. Link to the interactive activity to build a thermoscope: https://www.museogalileo.it/images/impara/museo_da_casa/fai_da_te/e_termoscopio.pdf (Accessed on 13th July 2022).
  56. Catalogue of the Room dedicated to ‘The Accademia del Cimento: Art and Experimental Science’: https://catalogue.museogalileo.it/room/RoomVIII.html (Accessed on 14th July 2022).
  57. Catalogue of the Museum concerning ‘Chemistry glassware’: https://catalogue.museogalileo.it/section/ThermometersAccademiaCimentoArtScienceGlassware.html (Accessed on 14th July 2022).
  58. Details of a thermometer of the Museum ‘Galileo’: https://catalogo.museogalileo.it/oggetto/TermometroCinquantigrado.html (Accessed on 14th July 2022).
  59. List of thermometers and other object of the collection of glassware of the Museum ‘Galileo’: https://catalogo.museogalileo.it/sezione/TermometriDellAccademiaVetriDarteScienza.html (Accessed on 14th July 2022).
  60. The famous Antonio Santucci's Armillary Sphere at the Museum ‘Galileo’: https://catalogue.museogalileo.it/section/AntonioSantuccisArmillarySphere.html (Accessed on 15th July 2022).
  61. V. Viviani, Opere di Galileo Galilei, Volume XIX. New edition, Barbera publisher; Firenze, 1966.
  62. One of the copies of the ‘Galilei’s thermoscope’ of the museum: https://catalogue.museogalileo.it/object/Thermoscope.html (Accessed on 16th July 2022).
  63. Activities on the web on ‘how to calibrate a thermometer’: https://www.physicsclassroom.com/class/thermalP/Lesson-1/Temperature-and-Thermometers (Accessed on 19th July 2022).
  64. A. A. Gallitto, V. Pace, R. Zingales, Museologia Scientifica, 2017, 11, 103-107.
  65. P.L. Daubenmire, M.T. van Opstal, N.J. Hall, B. Wunar, N. Kowrach, Int. J. Sci. Edu. – Part B, 2017, 7, 60-75.
  66. A. Francescangeli, J. Chem. Educ. 2020, 97, 12, 4400-4405.