Cytogenetic and cytological analysis of Colombian cape gooseberry genetic material for breeding purposes

Authors

  • Viviana Franco Florez Corporación Colombiana de Investigación Agropecuaria – Agrosavia. Centro de investigación Tibaitatá. Km 14 Vía Mosquera - Bogotá, Cundinamarca https://orcid.org/0000-0002-1311-5419
  • Sara Alejandra Liberato Guío Corporación Colombiana de Investigación Agropecuaria – Agrosavia. Centro de investigación Tibaitatá. Km 14 Vía Mosquera - Bogotá, Cundinamarca https://orcid.org/0000-0003-3485-3004
  • Erika Sanchez-Betancourt Corporación Colombiana de Investigación Agropecuaria – Agrosavia. Centro de investigación Tibaitatá. Km 14 Vía Mosquera - Bogotá, Cundinamarca https://orcid.org/0000-0002-3024-3180
  • Francy Liliana García-Arias Corporación Colombiana de Investigación Agropecuaria – Agrosavia. Centro de investigación Tibaitatá. Km 14 Vía Mosquera - Bogotá, Cundinamarca https://orcid.org/0000-0003-3112-9950
  • Víctor Manuel Nuñez Zarantes Corporación Colombiana de Investigación Agropecuaria – Agrosavia. Centro de investigación Tibaitatá. Km 14 Vía Mosquera - Bogotá, Cundinamarca https://orcid.org/0000-0002-5087-9864

DOI:

https://doi.org/10.36253/caryologia-1081

Keywords:

chloroplast number, chromosome number, mixoploidy, Physalis peruviana, plant breeding

Abstract

The cape gooseberry, Physalis peruviana L., is a crop that is transitioning from a semi-wild rural food source to becoming an international export commodity fruit deserving of greater attention from the scientific community, producers, policy makers, and opinion makers. Despite its importance, the crop has serious technological development challenges, mainly associated with the limited supply of genetically improved materials for producers and consumers. To bridge this gap, the present study determined the level of ploidy of 100 genotypes of cape gooseberry from a working collection by counting the number of chromosomes and chloroplasts, to include them in the breeding program. The number of chromosomes in dividing cells of root-tip meristems, as well as the number of chloroplasts per guard cell, from plants grown under in vitro and ex vitro conditions were determined. Haploid with 24 chromosomes, doubled haploid, tetraploid with 48 chromosomes, aneuploid (44 and 49 chromosomes), and mixoploid genotypes with 36 to 86 chromosomes were found. The number of chloroplasts per guard cell ranged from 4-8, 6-16, 7-16 and 9-21 for the haploid, aneuploid, doubled haploid-tetraploid, and mixoploid genotypes, respectively. The results showed evidence of a high cytogenetic diversity in the evaluated genotypes.

Downloads

Download data is not yet available.

References

Agronet (2019). Reportes Estadísticos. Available at: http://www.agronet.gov.co/estadistica/Paginas/default.aspx.
ANALDEX (2019). Comportamiento De Las Exportaciones.
Arcobelli, G., Machado, A., Damasceno, S., Carvalho, C. R., and Clarindo, W. R. (2014). In vitro polyploidization in solanum lycopersicum mill. “Santa Cruz Kada Gigante.” Cytologia (Tokyo). 79, 351–358. doi:10.1508/cytologia.79.351.
Bala, S., and Gupta, R. C. (2011). Effect of secondary associations on meiosis, pollen fertility and pollen size in cape gooseberry (Physalis peruviana L.). Chromosom. Bot. 6, 25–28. doi:10.3199/iscb.6.25.
Berdugo, J., Rodríguez, F., González, C., and Barrero, L. (2015). Variabilidad genética de parentales y poblaciones F1 inter e intraespecíficas de Physalis peruviana L. y P. floridana Rydb . Rev. Bras. Frutic. 37, 179–192. doi:http://dx.doi.org/10.1590/0100-2945-002/14.
Bracamonte, O., Guevara, M., González, R., Cox, E., Siles, M., and E, M. (1997). Estudio citogenético de Physalis peruviana “capulí de la costa.” Rev. Univ. Nac. San Marcos. Available at: www.unmsm.edu.pe/biologia.
Cotes, A., Jiménez, P., Rodríguez, M., Díaz, A., Zapata, J., Gomez, M., et al. (2012). Estrategias de control biológico de Fusarium oxysporum en el cultivo de uchuva (Physalis peruviana). , ed. A. Díaz Bogotá, Colombia: Corporación Colombiana de investigación Agropecuaria - Corpoica.
Franco, C. (2012). Número de cloroplastos y características morfológicas del fruto en ecotipos de uchuva (Physalis peruviana L.) Colombia, Kenia y Perú. Thesis.
Ganapathi, A., Sudhakaran, S., and Kulothungan, S. (1991). The Diploid Taxon in Indian Natural Populations of Physalis L. and its Taxonomic Significance. Cytologia (Tokyo). 56, 283–288. doi:10.1508/cytologia.56.283.
García-Arias, F. L., Osorio-Guarín, J. A., and Núñez Zarantes, V. M. (2018a). Association Study Reveals Novel Genes Related to Yield and Quality of Fruit in Cape Gooseberry (Physalis peruviana L.). Front. Plant Sci. 9, 1–16. doi:10.3389/fpls.2018.00362.
García-Arias, F., Sánchez-Betancourt, E., and Núñez, V. (2018b). Fertility recovery of anther-derived haploid plants in Cape gooseberry (Physalis peruviana L .). Agron. Colomb. 36, 201–209. doi:10.15446/agron.colomb.v36n3.73108.
Germanà, M. (2011). Anther culture for haploid and doubled haploid production. Plant Cell Tissue Organ Cult. 104, 283–300. doi:10.1007/s11240-010-9852-z.
Gupta, S. K., and Roy, S. K. (1985). Comparison of meiotic abnormalities induced by gamma-rays between a diploid and a tetraploid species of physalis. Cytologia (Tokyo). 50, 167–175. Available at: http://inis.iaea.org/search/search.aspx?orig_q=RN:17054590.
Koutoulis, A., Roy, A., Price, A., Sherriff, L., and Leggett, G. (2005). DNA ploidy level of colchicine-treated hops (Humulus lupulus L.). Sci. Hortic. (Amsterdam). 105, 263–268. Available at: https://eurekamag.com/research/004/094/004094715.php.
Lagos, T. (2006). Biología reproductiva, citogenética, diversidad genética y heterosis en parentales de uvilla o uchuva Physalis peruviana L.
Laguado, J. (2007). Aplicaciones de la citometría de flujo en microbiología, veterinaria y agricultura. Rev. MVZ Córdoba 12, 1077–1095. Available at: https://www.redalyc.org/articulo.oa?id=69312215.
Liberato, S., Sánchez-Betancourt, E., Argüelles, J., González, C., Núñez, V., and Barrero, L. S. (2014). Cytogenetic of Physalis peruviana L., and Physalis floridana Rydb. Genotypes with differential response to Fusarium oxysporum. Corpoica Cienc. Tecnol. Agropecu. 15, 51–61. doi:10.21930/rcta.vol15_num1_art:396.
Menzel, M. (1951). The Cytotaxonomy and Genetics of Physalis. Proc. Am. Philos. Soc. 95, 132–183. Available at: http://www.jstor.org/stable/3143331.
Michelangeli de Clavijo, C., Medina, A., Artioli, P., and Mata, J. (2006). Estudios citogenéticos de estructuras embriogénicas y plántulas regeneradas de onoto. Agron. Trop. 56, 129–137. doi:ISSN:0002-192X.
Moriconi, D., Rush, M., and Flórez, H. (1990). Tomatillo: una cosecha vegetal potencial para Luisiana. Avances en cosechas nuevas. Prensa la Madera, 407–413.
Murashige, T., and Skoog, F. (1962). A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiol. Plant. 15, 473–497. doi:10.1111/j.1399-3054.1962.tb08052.x.
Núñez, V., Sánchez-Betancourt, E., Mayorga, F., Navas, A., and Gómez, L. (2016a). Corpoica Andina. Variedad de uchuva para Boyacá, Cundinamarca, Antioquia y Nariño. Mosquera, Cundinamarca Available at: https://repository.agrosavia.co/handle/20.500.12324/11528.
Núñez, V., Sánchez-Betancourt, E., Mayorga, F., Navas, A., and Gómez, L. (2016b). Corpoica Dorada. Variedad de uchuva para Boyacá, Cundinamarca y Antioquia. Mosquera, Cundinamarca Available at: https://repository.agrosavia.co/handle/20.500.12324/11565.
Orrillo, M., and Bonierbale, M. (2009). Biología reproductiva y citogenética de la papa. Int. Potato Center, Lima, 1–44. Available at: https://research.cip.cgiar.org/confluence/download/attachments/14942278/Manual_Citologia_2009-04-17+B.pdf.
Ortiz, R., Ulburghs, F., and Ukoro, J. (1998). Seasonal Variation of Apparent Male Fertility and 2n Pollen Production in Plantain and Banana. Hortic. Sci. 33, 146–148.
Poggio, L., and Naranjo, C. (2004). “II. Capítulo 5 Citogenética,” in Biotecnología y Mejoramiento Vegetal, eds. V. Echenique, C. Rubinstein, and L. Mroginski (Buenos Aires, Argentina: Ediciones INTA), 69–79.
PROCOLOMBIA (2020). Exportaciones - Uchuva.
Rodríguez, N., and Bueno, M. (2006). Study of the cytogenetic diversity of Physalis peruviana L. (Solanaceae). Acta Biológica Colomb. 11, 75–85. Available at: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-548X2006000200006.
Sánchez, E. (2014). Nivel de ploidía de plantas de uchuva provenientes de cultivo de anteras. Master’s Thesis. Available at: http://bdigital.unal.edu.co/44370/.
Serrato-Cruz, M., Hernández-Rodríguez, M., Savidan, Y., and Bárcenas-Ortega, N. (2000). Determinación de la ploidía en progenies de Tagetes spp. mediante citómetro de flujo. Agrociencia 34, 735–740.
Trevisani, N., Melo, R. C. de, Oliveira, P. M., Porto, M., Meirelles, J. L., and Guidolin, A. F. (2018). Ploidy and DNA content of cape gooseberry populations grown in southern Brazil. Caryologia 71, 414–419. doi:10.1080/00087114.2018.1494440.
Vilmorin, R., and Simonet, M. (1928). Recherches sur le nombre des chromosomes chez les solanées. Kong. Vererbungswiss, Verhandl.
Yamamoto, K., and Sakai, K. (1932). On the chromosome number in some Solanaceae. Jpn J Genet 8, 27–33. doi:10.1266/jjg.8.27.
Zagorska, N. A., Shtereva, L. A., Kruleva, M. M., Sotirova, V. G., Baralieva, D. L., and Dimitrov, B. D. (2004). Induced androgenesis in tomato (Lycopersicon esculentum Mill.). III. Characterization of the regenerants. Plant Cell Rep. 22, 449–456. doi:10.1007/s00299-003-0720-8.

Downloads

Published

2021-12-21

How to Cite

Franco Florez, V., Liberato Guío, S. A., Sanchez-Betancourt, E., García-Arias, F. L., & Nuñez Zarantes, V. M. (2021). Cytogenetic and cytological analysis of Colombian cape gooseberry genetic material for breeding purposes. Caryologia, 74(3), 21–30. https://doi.org/10.36253/caryologia-1081

Issue

Section

Articles