Genomic portraits: karyotyping of some Nigerian bat species

Cytology of Nigerian bats

Authors

  • Chinedu Innocent Ngene Department of Zoology and Environmental Biology, University of Nigeria, Nsukka, Enugu State, Nigeria https://orcid.org/0000-0001-6757-8737
  • Elijah Sunday Okwuonu Department of Zoology and Environmental Biology, University of Nigeria, Nsukka, Enugu State, Nigeria
  • Ifeanyi Damian Ogbonna Department of Plant Science and Biotechnology, University of Nigeria, Nsukka, Enugu State, Nigeria
  • Chinaza Blessing Ukwueze Department of Zoology and Environmental Biology, University of Nigeria, Nsukka, Enugu State, Nigeria
  • Vincent Chinwendu Ejere Department of Zoology and Environmental Biology, University of Nigeria, Nsukka, Enugu State, Nigeria https://orcid.org/0000-0003-2657-1912

DOI:

https://doi.org/10.36253/caryologia-3365

Keywords:

Chromosomes, Megabat, Centric fission, Epomophorus, Microteropus, Nycteris, Scotophilus

Abstract

Chromosome studies were conducted on bat species in the Nsukka Local Government Area of Enugu State, Nigeria, to determine their karyotypes and assess relatedness. Chromosomes were isolated from the bone marrow and testes of various bat species using 0.4% colchicine for cell division arrest. A calibrated eye-piece graticule was used for counting and measuring chromosomes from prepared slides. Calculations for arm ratios and centromeric indices were performed to categorize chromosomes, and ideograms were created based on these measurements. Standard karyotypes for each species were established using photomicrographs of mitotic metaphase chromosomes. A total of eight bat species were sampled, representing the suborders Yinpterochiropera and Yangochiroptera. The species included Epomophorus wahlbergi, Epomophorus gambianus, Microteropus pusillus from Yinpterochiropera, and Nycteris major, Nycteris grandis, Nycteris arge, Scotophilus diaganii, and Scotophilus leucogaster from Yangochiroptera. The diploid chromosome numbers (2n) and fundamental numbers (FN) were as follows: Epomophorus wahlbergi (2n=35, FN=70), Epomophorus gambianus (2n=36, FN=79), Microteropus pusillus (2n=36, FN=79), Nycteris major (2n=40, FN=80), Nycteris grandis (2n=42, FN=82), Nycteris arge (2n=40, FN=78), Scotophilus diaganii (2n=36, FN=45), and Scotophilus leucogaster (2n=36, FN=54). Variations in 2n and FN were attributed to centric fission and loss of p arm segments in some chromosomal pairs, leading to different morphological traits observed in the bat species. The study highlights the rich diversity of bat species in Nsukka and supports the use of karyotyping as an effective method for species differentiation.

Downloads

Download data is not yet available.

Author Biographies

Ifeanyi Damian Ogbonna, Department of Plant Science and Biotechnology, University of Nigeria, Nsukka, Enugu State, Nigeria

Plant Science and Biolotechnology

Chinaza Blessing Ukwueze, Department of Zoology and Environmental Biology, University of Nigeria, Nsukka, Enugu State, Nigeria

Department of Zoology and Environmental Biology

Vincent Chinwendu Ejere, Department of Zoology and Environmental Biology, University of Nigeria, Nsukka, Enugu State, Nigeria

Department of Zoology and Environmental Biology 

References

Abraham Z. & Prasad PN. (1983). A system of chromosome classification and nomenclature. Cytologia, 48, 95–101. https://doi.org/10.1508/cytologia.48.95.

Adegoke JA. & Ejere VC. Description of the chromosomes of three lizard species belonging to the genus, Mabuya (Scincidae, Reptilia). Caryologia, 44, 333–342. https://doi.org/10.1080/00087114.1991.10797199.

Anthony SJ, Johnson CK, Greig DJ, Kramer S, Che X et al. (2017). Global patterns in coronavirus diversity. Virus Evolution, 3(1), vex012. https://doi.org/10.1093/ve/vex012.

Austad SN. (2010). Methuselah’s zoo: how nature provides us with clues for extending human health span. Journal of Comparative Pathology, 142, S10–S21. https://doi.org/10.1016/j.jcpa.2009.10.024.

Baker RJ. & Bickham JW. (1980). Karyotypic evolution in bats: Evidence of extensive and conservative chromosomal evolution in closely related taxa. Systematic Zoology, 29(3), 239–253. https://doi.org/10.2307/2412660.

Bickman JW. (1979). Banded Karyotypes of 11 Species of American Bats (Genus Myotis). Journal of Mammalogy, 60, 350 – 363. https://doi.org/10.2307/1379807.

Brook CE. & Dobson AP. (2015). Bats as “special” reservoirs for emerging zoonotic pathogens. Current Trends Microbiology, 23(3), 172–180.

Bulkina TM. & Kruskop SV. (2009). Search for morphological differences between genetically distinct brown long-eared bats (Plecotus auritus s. lato, Vespertilionidae). Plecotus, 11-12: 3–13.

Bumrungsri S, Lang D, Harrower C, Sripaoraya E, Kitpipit K and Racey PA. (2013). The dawn bat, Eonycteris spelaea Dobson (Chiroptera: Pteropodidae) feeds mainly on pollen of economically important food plants in Thailand. Acta Chiropterologica, 15(1), 95–104. https://doi.org/10.3161/150811013X667894.

Cibele G. Sotero-Caio, Robert J. Baker, and Marianne Volleth (2017). Chromosomal evolution in Chiroptera. Genes, 8, 273. https://doi.org/10.3390/genes8100272.

Denys C, Kadjo B, Missoup AD, Monadjem A and Aniskine V. (2013). New records of bats (Mammalia: Chiroptera) and karyotypes from Guinean Mount Nimba (West Africa). Italian Journal of Zoology, 80(2): 279–290. https://doi.org/10.1080/11250003.2013.775367.

Drexler JF, Corman VM, Muller MA, Maganga GD, Vallo P, Binger T. et al. (2012). Bats host major mammalian paramyxoviruses. Nature Communications, 3, 796. https://doi.org/10.1038/ncomms1796.

Dulic B. & Mutere FA. (1975). Les chromosome de tro’s especes, des, megachropteres (mamm ba, chiroptera) d’Afrique orientale. Caryologia, 26, 389–396.

Eick GN, Jacobs DS, Yang F and Volleth M. (2007). Karyotypic differences on sibling species of Scotophilus from South Africa (Vespertilionidae, Chiroptera, Mammalia). Cytogenetic and Genome Research, 118(1), 72–77. https://doi.org/10.1159/000106444.

Ejere VC. & Adegoke JA. (2001). Karyological study of banded gecko, Hemidactylus fasciatus fasciatus Gray (Gekkonidae, Reptilia). Cytologia, 66, 133–137. https://doi.org/10.1508/CYTOLOGIA.66.133.

Fahr J. (2013). Rhinolophus maclaudi Maclaud’s horseshoe bat in mammals of Africa. In: Happold M & Happold DCD (Editors). Mammals of Africa, Volume IV: Hedgehogs, Shrews and Bats. Bloomsbury, London, England.

Fenton MB, Grinnell AD, Popper AN and Fay RR. (2016). Bat Bioacoustics. Springer, New York.

Foley NM, Goodman SM, Whelan CV, Peuchmaille SJ and Teeling T. (2017). Towards navigating the minotaur’s labyrinth: cryptic diversity and taxonomic revision within the speciose genus Hipposideros (Hipposideridae). Acta Chiropterologica, 19, 1–18. https://doi.org/10.3161/15081109ACC2017.19.1.001.

Geospatial Analysis Mapping and Environmental Research Solution (GAMERS). 2018. Map of Enugu State, Nigeria. Available at: https://www.gamers.com.ng/map-of-enugu-state-nigeria/. Accessed on 22nd August 2019.

Haiduk MW, Baker RJ, Robbins L and Shlitter DA. (1981). Chromosomal evolution in African Megachiraptera: G-and C-band assessment of the magnitude of change in similar standard karyotypes. Cytogenetics & Cell Genetics, 29(4), 221–232. https://doi.org/10.1159/000131573

Happold M. & Happold DCD. (2013). Mammals of Africa. Volume IV: Hedgehogs, Shrews and Bats. Bloomsbury Publishing, London, United Kingdom. 800 pp.

Hsu TC. & Arrighi FE. (1971). Distribution of constitutive heterochromatin in mammalian chromosomes. Chromosoma, 34(3), 243–253. https://doi.org/10.1007/BF00286150.

Kartavtseva IV. (2002). Karyosystematics of Wood and Field Mice (Rodentia: Muridae). Dal’nauka Press, Vladivostok. 144 pp.

Kearney TC, Volleth M, Contrafatto G and Taylor PG. (2002). Systematic implications of chromosome GTG-band and bacula morphology for southern African Eptesicus and Pipistrellus and several other species of Vespertilioninae (Chiroptera: Vespertilionidae). Acta Chiropterologica, 4(1), 55–76. https://doi.org/10.3161/001.004.0107.

Koubinová D, Sreepoda K, Koubek P and Zima J. (2010). Karyotypic variation in rhinolophid and hopposiderid bats (Chiroptera; Rhirolophidae, Hipposideridae). Acta Chiropterologica, 12, 393–400. https://doi.org/10.3161/150811010X537972.

Kruskop SV. (2006). Towards the taxonomy of the Russian Murina. Russian Journal of Theriology, 4(2), 135–140. https://doi.org/10.15298/rusjtheriol.04.2.01

Kruskop SV. (2012). Order Chiroptera. In: Pavlinov, I.Y. & Lissovsky, A.A. (Editors). The Mammals of Russia: A Taxonomic and Geographic Reference. KMK Scientific Press, Moscow. 604 pp. https://doi.org/10.5772/intechopen.78767

Kruskop SV, Borisenko AV, Ivanova NV, Lim BK and Eger JL. (2012). Genetic diversity of northeastern Palaearctic bats as revealed by DNA barcodes. Acta Chiropterologica, 14(1), 1–14. https://doi.org/10.3161/150811012X654222.

Matthey, R. 1973. The chromosome formulae of eutherian mammals. In Cytotaxonomy and Vertebrate Evolution, ed. A. B. Chiarelli and E. Capanna, 531–616. Academic Press: London/New York.

McCracken GF, Westbrook JK, Brown VA, Eldridge M, Federico P and Kunz TH. (2012). Bats track and exploit changes in insect pest populations. PLoS ONE, 7(8), e43839. https://doi.org/10.1371/journal.pone.0043839.

Peterson RL. & Nagorsen DW. (1975). Chromosome of fifteen species of bats (Chiroptera) form kerygad Rhodesia. Life Science Occasional Paper Royals Ontario Museum, 27, 1–14.

Porter CA, Primus AW., Hoffmann FG and Baker RJ (2010). Karyology of five species of bats (Vespertiliondae Hipposideridae, and Nycteridae) from Gabon with comments on the taxonomy of Glauconycteris museum of Texas Tech. University Occasion paper, 295. https://doi.org/10.5962/bhl.title.156992.

Primes A, Harvey J, Guimondou S, Mboumba S, Ngangui R, Hoffmann F, Baker R and Porter CA. (2006). Karyology and chromosome evolution of some small mammals inhabiting the rainforest of the Rabi oil field, Gabon. Bulletin of the Biological Society of Washington, 12, 372–382.

Puig-Montserrat X, Torre I, L´opez-Baucells A, Guerrieri E and Monti MM. (2015). Pest control service provided by bats in Mediterranean rice paddies: linking agroecosystems structure to ecological functions. Mammalian Biology, 80(3), 237–245. https://doi.org/10.1016/j.mambio.2015.03.008.

Rautenbach IL, Bronner GN, Schlitter DA. (1993). Karyotypic data and attendant systematic implications for the bats of Southern Africa. Koedoe, 36, 87–104. https://doi.org/10.4102/koedoe.v36i2.377.

Riccucci M. & Lanza B. (2014). Bats and insect pest control: a review. Vespertilio, 17, 161–169.

Rickart EA, Mercier JA, Henny LR. (1999). Cytogeography of Philippine bats (Mammalia; Chiroptera). Proceedings of the Biological Society of Washington, 112, 453–469. https://doi.org/10.5281/zenodo.13442161.

Ruedas LA, Lee TE, Bickman J and Schlitter DA. (1990). Chromosomes of five species of vespertilionid bats from Africa. Journal of Mammalogy, 71(1), 94. https://doi.org/10.2307/1381324.

Ruedi M, Csorba G, Lin LK and Chou CH. (2015). Molecular phylogeny and morphological revision of Myotis bats (Chiroptera: Vespertilionidae) from Taiwan and adjacent China. Zootaxa, 3920(1), 301–342. https://doi.org/10.11646/zootaxa.3920.2.6.

Schlitter DA, Rautenbach IL, Wohlhuter DA. (1980). Karyotpyes and morphometrics of two species of Scotophilus in South Africa (Mammalia: Vespertilionidae). Annals of the Transvaal Museum, 32, 231–239. https://doi.org/10.2307/1381324.

Simmons NB (2005). Order Chiroptera. In: Wilson, D. & Reeder, D.M. (Editors). Mammal Species of the World: A Taxonomic and Geographic Reference. Smithsonian Institution Press, Washington DC.

Simmons NB. & Conway TM. (2003). Evolution of ecological diversity in bats. In: Kunz, T.H. & Fenton, M.B. (Editors). Bat Ecology. University of Chicago Press, Chicago, Illinois. Pp. 493–535.

Sotero CG, Baker RJ, Volleth M. (2017). Chromosomal evolution in Chiroptera. Genes, 8(10), 272. https://doi.org/10.3390/gene8100272.

Sreepada K, Koubinová D, Konecny A, Koubek P, Rab P, Rábová M and Zima J. (2008). Karyotypes of three species of molossid bats (Molossidae, Chiroptera) from India and West Africa. Folia Zoologica, 57, 347–357. https://www.ivb.cz/wp-content/uploads/57_347-357.pdf. ISSN 0139-7893.

Stevens RD. & Willig MR. (2002). Geographical ecology at the community level: perspectives on the diversity of New World bats. Ecology, 83, 545–560. https://doi.org/10.1890/0012-9658(2002)083[0545:GEATCL]2..0.CO;2.

Strelkov PP. (2006). The crisis of the polytypic species concept is illustrated by the genus Plecotus. Plecotus, 9, 3–7.

Teeling EC, Dool S, Springer MS. (2012). Phylogenies, fossils and functional genes: the evolution of echolocation in bats. In: Gunnell, G. and Simmons, N. (Editors). Evolutionary History of Bats: Fossils, Molecules and Morphology. Cambridge University Press, Cambridge. Pp. 1–22. https://doi.org/10.1016/.tree.2006.01.001.

Tiunov MP (2011). Distribution of the bats in the Russian Far East. Proceedings of the Japan-Russia Cooperation Symposium on the Conservation of the Ecosystem. Okhotsk, Sapporo, pp. 359–369. https://doi.org/10.5772/intechopen.78767.

Volleth M. & Heller KG (2012). Variations on a theme: karyotype comparison in Eurasian myotis species and implications for phylogeny. Vespertilio, 16, 329–350.

Volleth M, Heller KG, Fahr J. (2006). Phylogenetic relationships of three “Nycticeiini” genera (Vespertilionidae, Chiroptera, Mammalia) as revealed by karyological analysis. Mammalian Biology, 71(1), 1–12. https://doi.org/10.1016/j.mambio.2005.09.001.

Volleth M, Heller KG, Pfeiffer RA and Hameister HA (2002). A comparison of zoo fish analysis in bats elucidates the phylogenetic relationships between Megachiroptera and five microchiroptera formulas. Chromosome Research, 10, 477–497. https://doi.org/10.1023/a:1020992330679.

Volleth M, Son NT, Wu Y, Li Y, Yu W. et al. (2017). Comparative chromosomal studies in Rhinolophus formosae and R. luctus from China and Vietnam: elevation of R. l. lanosus to species rank. Acta Chiropterologica, 19(1), 41–50. https://doi.org/10.3161/15081109ACC2017.19.1.003.

Wang LF, Walker PJ, Poon LL. (2011). Mass extinctions, biodiversity, and mitochondrial function: are bats “special” as reservoirs for emerging viruses? Current Opinion in Virology, 1(6), 649–657. https://doi.org/10.1016/j.coviro.2011.10.013.

Wilson DE. & Reeder DM. (2005). Mammal Species of the World: A Taxonomic and Geographic Reference. 3rd Edition. Johns Hopkins University Press, Baltimore. https://doi.org/10.1644/06-MAMM-R-422.1.

Downloads

Published

2025-10-07

How to Cite

Ngene, C. I., Okwuonu, E. S., Ogbonna, I. D., Ukwueze, C. B., & Ejere, V. C. (2025). Genomic portraits: karyotyping of some Nigerian bat species: Cytology of Nigerian bats. Caryologia, 78(1), 3–26. https://doi.org/10.36253/caryologia-3365

Issue

Section

Articles

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 > >> 

You may also start an advanced similarity search for this article.