Cytogenetic survey of eight ant species from the Amazon rainforest

Authors

  • Luísa Antônia Campos Barros Universidade Federal do Amapá, Campus Binacional - Oiapoque https://orcid.org/0000-0002-1501-4734
  • Gisele Amaro Teixeira Programa de Pós-graduação em Biologia Celular e Estrutural, Universidade Federal de Viçosa,
  • Paulo Castro Ferreira
  • Rodrigo Batista Lod Universidade Federal do Amapá, Campus Binacional - Oiapoque
  • Linda Inês Silveira Programa de Pós-graduação em Biologia Animal, Universidade Federal de Viçosa
  • Frédéric Petitclerc CNRS, UMR EcoFoG, AgroParisTech, CIRAD, INRA, Université de Guyane, Université des Antilles, Campus Agronomique
  • Jérôme Orivel CNRS, UMR EcoFoG, AgroParisTech, CIRAD, INRA, Université de Guyane, Université des Antilles, Campus Agronomique
  • Hilton Jeferson Alves Cardoso de Aguiar Universidade Federal do Amapá

DOI:

https://doi.org/10.36253/caryologia-1106

Keywords:

Karyotype, Chromosome evolution, Biodiversity, Formicidae, Neotropics, Taxonomy

Abstract

The scarce information regarding ant diversity in the state of Amapá and lack of cytogenetic data of species from the Amazon region can hide ant biodiversity information that may be detectable with affordable cytogenetic techniques. In this study, we describe the karyotypes of eight ant taxa collected from Amazonian localities in French Guiana and Brazil. Chromosome numbers ranged from 2n = 18 to 2n = 68. The following chromosome numbers were observed for each species: Azteca sp. group chartifex 2n = 28; Dolichoderus bidens (Linnaeus, 1758) 2n = 18; Gnamptogenys tortuolosa (Smith, 1858) 2n = 44; Camponotus renggeri Emery, 1894 n = 20; Pseudomyrmex unicolor (Smith, 1855) 2n = 68 and n = 34; Apterostigma sp. pilosum complex 2n = 46; Odontomachus bauri Emery, 1892 2n = 44, and Wasmannia auropunctata (Roger, 1863) 2n = 32. The karyotypes of P. unicolor, G. tortuolosa, and O. bauri are reported here for the first time. Our data enabled comparisons between chromosomal data of some species from Amazon and Atlantic rainforests. We also highlight the methods used for the ant chromosome classification.

Downloads

Download data is not yet available.

Author Biography

Paulo Castro Ferreira

Universidade Federal do Amapá, Campus Binacional - Oiapoque,

References

Aguiar HJAC, Barros LAC, Alves DR, Mariano CSF, Delabie JHC, Pompolo SG 2017. Cytogenetic studies on populations of Camponotus rufipes (Fabricius, 1775) and Camponotus renggeri Emery, 1894 (Formicidae: Formicinae). PLoS ONE 12(5): e0177702.
Aguiar HJAC, Barros LAC, Silveira LI, Petitclerc F, Etienne S, Orivel J. 2020. Cytogenetic data for sixteen ant species from North-eastern Amazonia with phylogenetic insights into three subfamilies. Comp Cytogenet. 14(1): 43–60.
Araújo D, Schneider MC, Zacaro AA, Oliveira EG, Martins R, Brescovit AD, Cella D. M. 2020. Venomous Loxosceles species (Araneae, Haplogynae, Sicariidae) from Brazil: 2n? = 23 and X1X2Y sex chromosome system as shared characteristics. Zool Sci. 37(2): 128–139.
Barros LAC, Aguiar HJAC, Mariano CSF, Delabie JHC, Pompolo SG. 2013. Cytogenetic characterization of the ant Trachymyrmex fuscus Emery, 1934 (Formicidae: Myrmicinae: Attini) with the description of a chromosomal polymorphism. Ann Soc Entomol Fr. 49(4): 367–373
Barros LAC, Teixeira GA, Aguiar HJAC, Mariano CSF, Delabie JHC, Pompolo SG. 2014. Banding patterns of three leafcutter ant species of the genus Atta (Formicidae: Myrmicinae) and Chromosomal Inferences. Fla Entomol. 97(4): 1694–1701.
Barros LAC, Aguiar HJAC, Mariano CS, Andrade-Souza V, Costa MA, Delabie JH, Pompolo SG. 2016. Cytogenetic data on six leafcutter ants of the genus Acromyrmex Mayr, 1865 (Hymenoptera, Formicidae, Myrmicinae): insights into chromosome evolution and taxonomic implications. Comp Cytogenet. 10(2): 229–243.
Brandão KO, Rocha-Reis DA, Garcia C, Pazza R, Almeida-Toledo LF, Kavalco KF. 2018. Studies in two allopatric populations of Hypostomus affinis (Steindachner, 1877): the role of mapping the ribosomal genes to understand the chromosome evolution of the group. Comp Cytogenet. 12(1): 1-12.
Chèvre AM, Mason AS, Coriton O, Grandont L, Jenczewski E, Lysak MA. 2018. Cytogenetics, a Science Linking Genomics and Breeding: The Brassica Model. In: Liu S., Snowdon R., Chalhoub B. (eds) The Brassica napus Genome. Compendium of Plant Genomes. Springer, Cham.
Cioffi MB, Moreira-Filho O, Ráb P, Sember A, Molina WF, Bertollo LAC. 2018. Conventional cytogenetic approaches – Useful and indispensable tools in discovering fish biodiversity. Curr Genet Med Rep. 6(4): 176–186.
Di-Nizo CB, da Silva Banci KR, Sato-Kuwabara Y, Silva MJDJ. 2017. Advances in cytogenetics of Brazilian rodents: cytotaxonomy, chromosome evolution and new karyotypic data. Comp Cytogenet. 11(4): 833–892.
Duarte DD, Souza LHB, Cordeiro LM, Araújo D. 2020. The Highest chromosome number and first chromosome Fluorescent in situ Hybridization in the velvet worms of the family Peripatidae. Zool Stud. 59: e5.
Fadini MAM, Pompolo SG. 1996. Cytogenetics of some ant species of the tribe Attini (Hymenoptera, Formicidae) from the region of Viçosa, MG. Rev. Bras. Genetica 19: 53–55.
Franco W, Ladino N, Delabie JHC, Dejean A, Orivel J, Fichaux M, Groc S, Leponce M, Feitosa RM. 2019. First checklist of the ants (Hymenoptera: Formicidae) of French Guiana. Zootaxa 4674(5): 509–543.
Goñi B, Zolessi LC, Imai HT. 1981. Chromosome observations of some Uruguayan ants. Annu Report Natl Inst Genet Jpn. 32: 69–70.
Goñi B, Zolessi LC, Imai HT. 1983. Karyotypes of thirteen ant species from Uruguay (Hymenoptera, Formicidae). Caryologia 36: 363–371.
Hirai H. 2020. Chromosome dynamics regulating genomic dispersion and alteration of nucleolus organizer regions (NORs). Cells 9(4): 971.
Hirai H, Yamamoto MT, Ogura K, Satta Y, Yamada M, Taylor RW, Imai HT. 1994. Multiplication of 28S rDNA and NOR activity in chromosome evolution among ants of the Myrmecia pilosula species complex. Chromosoma 103(3): 171-178.
Imai HT. 1991. Mutability of constitutive heterochromatin (C-bands) during eukaryotic evolution and their cytological meaning. Jpn J Genet. 66: 635–661.
Imai HT, Urbani CB, Kubota M, Sharma GP, Narasimhanna MN, Das BC, Sharma A K, Sharma A, Deodikar GB, Vaidya VG, Rajasekarasetty MR. 1984. Karyological survey of Indian ants. Jpn J Genet. 59(1): 1–32.
Imai H, Taylor RW, Crosland MW, Crozier RH. 1988. Modes of spontaneous chromosomal mutation and karyotype evolution in ants with reference to the minimum interaction hypothesis. Jpn J Genet. 63: 159–185.
Imai HT, Taylor RW, Crozier RH. 1994. Experimental bases for the minimum interaction theory. 1. Chromosome evolution in the ant Myrmecia pilosula species complex. Jpn J Genet. 69: 137–182.
Kempf WW. 1959. Insecta Amapaensia.—Hymenoptera: Formicidae. Studia Entomol. 2(1-4): 209–219.
King M. 1993. Species Evolution: The role of chromosome change. Cambridge University Press, Cambridge.
Lattke JE. 1997. Revisión del gênero Apterostigma Mayr (Hymenoptera: Formicidae). [Revision of the genus Apterostigma Mayr (Hymenoptera: Formicidae)] Arquivos de Zoologia 34(5): 121 221. Spanish
Levan A, Fredga K, Sandberg AA. 1964. Nomenclature for centromeric position on chromosomes. Hereditas 52: 201–220.
Liehr T. 2017. Classical cytogenetics” is not equal to “banding cytogenetics. Mol Cytogenet. 10(3): 1–3.
Lorite P, Palomeque T. 2010. Karyotype evolution in ants (Hymenoptera: Formicidae), with a review of the known ant chromosome numbers. Myrmecol News 3(1): 89–102.
Mariano CSF, Pompolo SG, Delabie JHC, Fresneau D. 2000. Citogenética das espécies gêmeas e simpátricas Pachycondyla villosa e Pachycondyla sp. ‘inversa’ (Ponerinae) [Cytogenetics of twin and sympatric species Pachycondyla villosa and Pachycondyla sp. 'inversa' (Ponerinae)]. Naturalia 24: 215–217. Portuguese.
Mariano CSF, Santos ID, Groc S, Leroy C, Malé PJ, Ruiz-González MX, Cerdan P, Dejean A, Delabie JHC. 2011. The karyotypes of Gigantiops destructor (Fabricius) and other ants from French Guiana (Formicidae). Ann Soc Entomol Fr. 47(1–2): 140–146.
Mariano CSF, Santos IS, Silva JG, Costa MA, Pompolo SG. 2015. Citogenética e evolução do cariótipo em formigas poneromorfas [Cytogenetics and karyotype evolution in poneromorph ants]. In: Delabie JHC, Feitosa RM, Serrão JE, Mariano CSF, Majer JD, eds. As formigas poneromorfas do Brasil. Ilhéus, Brasil: Editora da Universidade Estadual de Santa Cruz (UESC), 102–125. Portuguese.
Mariano CSF, Barros LAC, Velasco YM, Guimarães IN, Pompolo SG, Delabie JHC. 2019. Citogenética de las hormigas de la región neotropical. [Ant cytogenetics of neotropical region ants of Colombia]. In: Fernández, F., Guerrero RJ, Delsinne T. Ants of Colombia. Universidad Nacional de Colombia, Bogotá. p. 131–157. Spanish
Micolino R, Cristiano MP, Travenzoli NM, Lopes DM, Cardoso DC. 2019. Chromosomal dynamics in space and time: evolutionary history of Mycetophylax ants across past climatic changes in the Brazilian Atlantic coast. Sci Rep. 9(1): 1–13.
Micolino R, Cristiano MP, Cardoso DC. 2020. Karyotype and putative chromosomal inversion suggested by integration of cytogenetic and molecular data of the fungus-farming ant Mycetomoellerius iheringi Emery, 1888. Comp Cytogenet. 14(2): 197.
Petitpierre E. 2011. Cytogenetics, cytotaxonomy and chromosomal evolution of Chrysomelinae revisited (Coleoptera, Chrysomelidae). ZooKeys 157: 67–79.
Ronque MUV, Azevedo-Silva M, Mori GM, Souza AP, Oliveira PS 2016. Three ways to distinguish species: using behavioural, ecological, and molecular data to tell apart two closely related ants, Camponotus renggeri and Camponotus rufipes (Hymenoptera: Formicidae). Zool J Linn Soc. 176: 170–181.
Santos IS, Mariano CSF, Andrade V, Costa MA, Delabie JHC, Silva JG. 2010. A cytogenetic approach to the study of Neotropical Odontomachus and Anochetus Ants (Hymenoptera: Formicidae). Ann Soc Entomol Fr. 103(3): 424–429.
Santos IS, Mariano CS, Delabie JHC, Costa MA, Carvalho AF, Silva JG. 2016. “Much more than a neck”: karyotype differentiation between Dolichoderus attelaboides (Fabricius, 1775) and Dolichoderus decollates F. Smith, 1858 (Hymenoptera: Formicidae) and karyotypic diversity of five other Neotropical species of Dolichoderus Lund, 1831. Myrmecol News 23: 61–69.
Schubert I. 2011. Between genes and genomes–future challenges for cytogenetics. Front Genet. 2(30):1–2.
Schubert I, Lysack MA. 2011. Interpretation of karyotype evolution should consider chromosome structural constraints. Trends Genet. 27(6): 207–216.
?endo?an D, Alpagut-Keskin N. 2016. Karyotype and sex chromosome differentiation in two Nalassus species (Coleoptera, Tenebrionidae). Comp Cytogenet. 10(3): 371–185.
Souza ALB, Mariano CSF, Delabie JHC, Pompolo SG, Serrão JE. 2011. Cytogenetic Studies on Workers of the Neotropical Ant Wasmannia auropunctata (Roger 1863) (Hymenoptera: Formicidae: Myrmicinae). Ann Soc Entomol. Fr. 47(3-4): 510–513.
Sadeghian S, Hatami A, Riasat M. 2020. Karyotypic investigation concerning five Bromus species from several populations in Iran. Caryologia 73(1): 3-10.
Sposito EC, Mariano CSF, Pompolo SG, Delabie JHC. 2006. Exploratory studies on the karyotypes of seven species of the ant Neotropical genus Pseudomyrmex (Hymenoptera: Formicidae: Pseudomyrmecinae). Braz J Morphol Sci. 23: 129–136.
Teixeira GA, Barros LAC, Aguiar HJAC, Pompolo SG. 2017. Comparative physical mapping of 18S rDNA in the karyotypes of six leafcutter ant species of the genera Atta and Acromyrmex (Formicidae: Myrmicinae). Genetica 145: 351–357.
Vieira TB, Santana FA. 2020. Morfometria cromossômica de Camponotus renggeri Emery, 1894 (Hymenoptera: Formicidae). [Chromosomal morphometry of Camponotus renggeri Emery, 1894 (Hymenoptera: Formicidae)]. Bol. Mus. Para. Emílio Goeldi. Ciências Naturais 15(1): 231–235. Portuguese.
Winterfeld G, Becher H, Voshell S, Hilu K, Röser M. 2018. Karyotype evolution in Phalaris (Poaceae): The role of reductional dysploidy, polyploidy and chromosome alteration in a widespread and diverse genus. PLoS ONE 13(2): e0192869.
White MJD. 1973. Animal Cytology and Evolution. 3rd ed. Cambridge, Cambridge University Press.
Zacharopoulou A, Augustinos AA, Drosopoulou E, Tsoumani KT, Gariou?Papalexiou A, Franz G, Mathiopoulos KD, Bourtzis K, Mavragani?Tsipidou P. 2017. A review of more than 30 years of cytogenetic studies of Tephritidae in support of sterile insect technique and global trade. Entomol Exp Appl. 164(3): 204–225.
Wurster DH, Benirschke K. 1970. Indian muntjac, Muntiacus muntjak: a deer with a low diploid chromosome number. Science 168: 1364–1366.

Downloads

Published

2022-03-08

How to Cite

Barros, L., Teixeira, G., Ferreira, P. ., Lod, R., Silveira, L., Petitclerc, F., Orivel, J. ., & Aguiar, H. (2022). Cytogenetic survey of eight ant species from the Amazon rainforest. Caryologia, 74(4), 29–38. https://doi.org/10.36253/caryologia-1106

Issue

Section

Articles