Nuclear DNA content and comparative FISH mapping of the 5s and 45s rDNA in wild and cultivated populations of Physalis peruviana L.

Authors

  • Marlon Garcia Paitan Grupo de Investigación en Recursos Genéticos (RecGen), Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Perú https://orcid.org/0000-0003-3028-3454
  • Maricielo Postillos-Flores Grupo de Investigación en Recursos Genéticos (RecGen), Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Perú https://orcid.org/0000-0002-1884-2922
  • Luis Rojas Vasquez Grupo de Investigación en Recursos Genéticos (RecGen), Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Perú https://orcid.org/0000-0002-4159-156X
  • Maria Siles Vallejos Grupo de Investigación en Recursos Genéticos (RecGen), Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Perú https://orcid.org/0000-0003-4956-8310
  • Alberto López Sotomayor Grupo de Investigación en Recursos Genéticos (RecGen), Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Perú https://orcid.org/0000-0001-6070-5836

DOI:

https://doi.org/10.36253/caryologia-1728

Keywords:

Goldenberry, FISH, rDNA, Chromosomes, Flow cytometry

Abstract

Physalis peruviana L. often known as goldenberry, has increased its commercial growth in the international market in recent years due to its nutritional value and antioxidant potential. This situation has enabled countries such as Peru to increase their production in order to meet the global demand. However, investigations about the genetic diversity of cultivated and wild populations of goldenberry are still in their early stages. FISH mapping of 5s and 45s rDNA loci and flow cytometry estimation of nuclear DNA content were used to assess genetic differences between wild and cultivated goldenberry populations from Ayacucho and Cajamarca. The majority of metaphases had six 5s rDNA sites for all populations and two and four 45s rDNA sites for the cultivated and wild populations, respectively. We were able to characterize nine different types of chromosomes based on their morphology, fluorescence, rDNA location, and conservation across populations by analyzing the chromosomes that contained rDNA. Furthermore, cultivated populations had more nuclear DNA (13.262±0.087 pg) than wild populations (12.955±0.086 pg). The results show genetic differences between wild and cultivated populations of goldenberry at molecular cytogenetic level as well as in genome size. These findings establish a precedent for future cytogenetic and genomic studies in goldenberry populations, enabling future breeding programs.

Downloads

Download data is not yet available.

References

Aguilera PM, Debat HJ, Scaldaferro MA, Martí DA, Grabiele M. 2016. FISH-mapping of the 5S rDNA locus in chili peppers (Capsicum-Solanaceae). Anais da Academia Brasileira de Ciências. 88(1): 117-125.

Aliyeva L, Ma L, Houben A. 2015. A fast air-dry dropping chromosome preparation method suitable for FISH in plants. Journal of Visualized Experiments. 106: e53470.

Azeez S, Faluyi JO. 2019. Karyotypic studies of four Physalis species from Nigeria. Acta Botánica Hungarica. 61(1-2): 5-9.

Báez M, Souza G, Guerra M. 2020. Does the chromosomal position of 35S rDNA sites influence their transcription? A survey on Nothoscordum species (Amaryllidaceae). Genetics and molecular biology. 43(1): e20180194.

Bashir T, Chandra Mishra R, Hasan MM, Mohanta TK, Bae H. 2018. Effect of hybridization on somatic mutations and genomic rearrangements in plants. International journal of molecular sciences. 19(12): 3758.

Carbajal Y, Bonilla H, Siles-Vallejos M, López A. 2021. Comparative cytogenetics of Physalis peruviana in three cultivated populations from Cajamarca, Peru. Revista peruana de biología. 28(2):e20462.

Ciprian-Salcedo GC, Jimenez J, Zolla G. 2020. Flow cytometry applications in plant breeding. Revista Peruana De Biología. 27(1): 079-084.

Díez CM, Gaut BS, Meca E, Scheinvar E, Montes-Hernandez S, Eguiarte LE, Tenaillon MI. 2013. Genome size variation in wild and cultivated maize along altitudinal gradients. The new phytologist. 199(1): 264–276.

Doebley JF, Gaut BS, Smith BD. 2006. The molecular genetics of crop domestication. Cell. 127(7): 1309–1321.

Doležel J, Greilhuber J, Suda J. 2007. Estimation of nuclear DNA content in plants using flow cytometry. Nature Protocols. 2(9): 2233–2244

Fernandes T, de Almeida Rego L do NA, Nardy M, Yuyama PM, Vanzela ALL. 2009. Karyotype differentiation of four Cestrum species (Solanaceae) revealed by fluorescent chromosome banding and FISH. Genetics and molecular biology. 32(2): 320–327.

Fitzpatrick M. 2021. The Open Lab Book. Release 1.0. Readthedocs. p. 50-53;[accessed 2022 Apr 24]. https://buildmedia.readthedocs.org/media/pdf/theolb/latest/theolb.pdf

Franco CV, Liberato Guio SA, Sanchez Betancourt EP, García Arias FL, Nuñez Zarantes VM. 2021. Cytogenetic and cytological analysis of Colombian cape gooseberry genetic material for breeding purposes. Caryologia. 74(3): 21-30.

Fregonezi JN, Fernandes T, Torezan JMD, Vieira AOS, Vanzela ALL. 2006. Karyotype differentiation of four Cestrum species (Solanaceae) based on the physical mapping of repetitive DNA. Genetics and molecular biology. 29(1): 97–104.

Fulne?ek J, Lim KY, Leitch AR, Kova?ík A, Matyášek R. 2002. Evolution and structure of 5S rDNA loci in allotetraploid Nicotiana tabacum and its putative parental species. Heredity. 88(1): 19-25.

Garcia S, Kova?ík A, Leitch AR, Garnatje T. 2017. Cytogenetic features of rRNA genes across land plants: analysis of the Plant rDNA database. The Plant journal: for cell and molecular biology. 89(5): 1020–1030.

Hadziavdic K, Lekang K, Lanzen A, Jonassen I, Thompson EM, Troedsson C. 2014. Characterization of the 18S rRNA gene for designing universal eukaryote specific primers. PLoS One. 9(2):e87624.

Herrera JC. 2007. La citogenética molecular y su aplicación en el estudio de los genomas vegetales. Agronomía colombiana. 25(1): 26–35.

Huang M, Li H, Zhang L, Gao F, Wang P, Hu Y, Yan S, Zhao L, Zhang Q, Tan J, Liu X, He S, Li L. 2012. Plant 45S rDNA clusters are fragile sites and their instability is associated with epigenetic alterations. PLoS One. 7(4): e35139.

Jedrzejczyk I, Rewers M. 2020. Identification and genetic diversity analysis of edible and medicinal Malva species using flow cytometry and ISSR molecular markers. Agronomy. 10(5): 650.

Kapitonov VV, Jurka J. 2003. A novel class of SINE elements derived from 5S rRNA. Molecular biology and evolution.20(5): 694–702.

Kitamura S, Inoue M, Shikazono N, Tanaka A. 2001. Relationships among Nicotiana species revealed by the 5S rDNA spacer sequence and fluorescence in situ hybridization. Theoretical and applied genetics. 103(5): 678–686.

Kovarik A, Matyasek R, Lim KY, Skalická K, Koukalová B, Knapp S, Chase M, Leitch AR. 2004. Concerted evolution of 18-5.8-26S rDNA repeats in Nicotiana allotetraploids. Biological journal of the Linnean Society. Linnean Society. 82(4): 615–625.

Kwon J-K, Kim B-D. 2009. Localization of 5S and 25S rRNA genes on somatic and meiotic chromosomes in Capsicum species of chili pepper. Molecules and Cells. 27(2): 205–209.

Liberato S, Sánchez-Betancourt E, Argüelles JH, González C, Núñez VM, Barrero LS. 2014. Cytogenetics of Physalis peruviana L. and Physalis floridana Rydb. genotypes with differential response to Fusarium oxysporum. Corpoica Ciencia & Tecnología Agropecuaria. 15(1): 51-61.

Lim KY, Matyásek R, Lichtenstein CP, Leitch AR. 2000. Molecular cytogenetic analyses and phylogenetic studies in the Nicotiana section Tomentosae. Chromosoma. 109(4): 245–258.

Long EO, Dawid IB. 1980. Repeated genes in eukaryotes. Annual review of biochemistry. 49(1): 727–764.

Lopez FB, Fort A, Tadini L, Probst AV, McHale M, Friel J, Ryder P, Pontvianne FDR, Pesaresi P, Sulpice R, et al. 2021. Gene dosage compensation of rRNA transcript levels in Arabidopsis thaliana lines with reduced ribosomal gene copy number. The plant cell. 33(4): 1135–1150.

Matyasek R, Lim KY, Kovarik A, Leitch AR. 2003. Ribosomal DNA evolution and gene conversion in Nicotiana rustica. Heredity. 91(3): 268–275.

Michael TP.2014. Plant genome size variation: bloating and purging DNA. Briefings in functional genomics. 13(4): 308–317.

Mirzaghaderi G, Marzangi K. 2015. IdeoKar: an ideogram constructing and karyotype analyzing software, Caryologia. 68(1)31-35.

Moyetta NR, Urdampilleta JD, Chiarini FE, Bernardello GL. 2017. Heterochromatin and rDNA patterns in Solanum species of the Morelloid and Dulcamaroid clades (Solanaceae). Plant biosystems. 151(3): 539–547.

Nakamura R, Kitamura S, Inoue M, Ohmido N, Fukui K. 2001. Karyotype analysis of Nicotiana kawakamii Y. Ohashi using DAPI banding and rDNA FISH. Theoretical and applied genetics. 102: 810–814.

Park YK, Park KC, Park CH, Kim NS. 2000. Chromosomal localization and sequence variation of 5S rRNA gene in five Capsicum species. Molecules and Cells. 10(1): 18–24.

Pellicer J, Hidalgo O, Dodsworth S, Leitch IJ. 2018. Genome size diversity and its impact on the evolution of land plants. Genes (Basel). 9(2): 88.

Pellicer J, Leitch IJ. 2020. The Plant DNA C-values database (release 7.1): an updated online repository of plant genome size data for comparative studies. New Phytologist. 226(2): 301-305.

Pendinen G, Gavrilenko T, Jiang J, Spooner DM. 2008. Allopolyploid speciation of the Mexican tetraploid potato species Solanum stoloniferum and S. hjertingii revealed by genomic in situ hybridization. Genome. 51(9): 714-20.

Poggio L, Confalonieri V, Comas C, Gonzalez G, Naranjo CA. 2000. Evolutionary relationships in the genus Zea: analysis of repetitive sequences used as cytological FISH and GISH markers. Genetics and Molecular Biology. 23(4):1021–1027.

Prado EA, Faivre-Rampant P, Schneider C, Darmency MA. 1996. Detection of a variable number of ribosomal DNA loci by fluorescent in situ hybridization in Populus species. Genome. 39(5): 1020–1026.

Raskina O, Belyayev A, Nevo E. Activity of the En/Spm-like transposons in meiosis as a base for chromosome repatterning in a small, isolated, peripheral population of Aegilops speltoides Tausch. 2004. Chromosome research: an international journal on the molecular, supramolecular and evolutionary aspects of chromosome biology. 12(2): 153–161.

Rego LN, da Silva CRM, Torezan JM, Gaeta ML, Vanzela AL. 2009. Cytotaxonomical study in Brazilian species of Solanum, Lycianthes and Vassobia (Solanaceae). Plant systematics and evolution.279: 93–102.

Rodríguez NC, Bueno ML. 2006. Study of the cytogenetic diversity of Physalis peruviana L. (Solanaceae). Acta Biológica Colombiana, Bogotá. 11(2): 75-85.

Romero-da MV, Urdampilleta JD, Forni ER, Moscone EA. 2017. Cytogenetic markers for the characterization of Capsicum annuum L. cultivars. Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology. 151(1): 84-91.

Rosato M, Kova?ík A, Garilleti R, Rosselló JA. 2016. Conserved organisation of 45S rDNA sites and rDNA gene copy number among major clades of early land plants. PloS one. 11(9): e0162544.

Salim D, Gerton JL. 2019. Ribosomal DNA instability and genome adaptability. Chromosome research: an international journal on the molecular, supramolecular and evolutionary aspects of chromosome biology. 27(1–2): 73–87.

Sánchez EP. 2014. Ploidy Level of Cape Gooseberry Plants from Anther Cultivation. [master’s thesis]. Bogotá: Universidad Nacional de Colombia.

Sierra y Selva Exportadora. 2021. Analysis of the Goldenberry Market from 2015 to 2020. Peru: Unidad de Inteligencia Comercial; 9-18.

Siles M, Bracamonte O, García M, López A. 2021. The first report on the identification of the 5s rDNA locus in Physalis peruviana L. chromosomes. Scientia Agropecuaria. 12(2): 149-153.

Singh N, Singh S, Maurya P, Arya M, Khan F, Dwivedi DH, Saraf SA. 2019. An updated review on Physalis peruviana fruit: Cultivational, nutraceutical and pharmaceutical aspects. Indian Journal of Natural Products and Resources. 10(2): 97-110.

Su D, Chen L, Sun J, Zhang L, Gao R, Li Q, Han Y, Li Z. 2020. Comparative chromosomal localization of 45S and 5S rDNA sites in 76 purple-fleshed sweet potato cultivars. Plants. 9(7): 865.

Trevisani N, Melo, de Melo RC, Oliveira PM, Colli MP, Meirelles JL, Frederico A. 2018. Ploidy and DNA content of cape gooseberry populations grown in southern Brazil. Caryologia. 71(4): 414–419.

Urdampilleta J, Chiarini F, Stiefkens L, Bernardello G. 2014. Chromosomal differentiation of Tribe Cestreae (Solanaceae) by analyses of 18-5.8-26S and 5S rDNA distribution. Plant Systematics and Evolution. 301(5): 1325–1334.

Vitales D, D’Ambrosio U, Gálvez F, Kova?ík A, Garcia S. 2017. Third release of the plant rDNA database with updated content and information on telomere composition and sequenced plant genomes. Plant Systematics and Evolution. 303(8): 1115–1121.

Volkov RA, Zanke C, Panchuk II, Hemleben V. 2001. Molecular evolution of 5S rDNA of Solanum species (sect. Petota): application for molecular phylogeny and breeding. Theoretical and Applied Genetics. 103: 1273–1282.

Wendel JF, Jackson SA, Meyers BC, Wing RA. 2016. Evolution of plant genome architecture. Genome biology. 17(1): 37.

Youn-Kyu P, Kim B-D, Kim B-S, Armstrong KC, Kim N-S. 1999. Karyotyping of the chromosomes and physical mapping of the 5S rRNA and 18S-26S rRNA gene families in five different species in Capsicum. Genes & genetic systems. 74(4): 149–157.

Downloads

Published

2023-02-12

How to Cite

Garcia Paitan, M. ., Postillos-Flores, M., Rojas Vasquez, L., Siles Vallejos, M., & López Sotomayor, A. (2023). Nuclear DNA content and comparative FISH mapping of the 5s and 45s rDNA in wild and cultivated populations of Physalis peruviana L. Caryologia, 75(3), 123–134. https://doi.org/10.36253/caryologia-1728

Issue

Section

Articles