Phenthoate toxicity evaluation in root meristem of Pisum sativum L.

Authors

DOI:

https://doi.org/10.36253/caryologia-2036

Keywords:

phenthoate, seed germination, radicle length, Mitotic Index, genotoxicity, cell proliferation kinetics, Pisum sativum L.

Abstract

Phenthoate is an organothiophosphate insecticide. Effect of phenthoate on the cytogenetic alterations in root tip cells of Pisum sativum L., a multiuse crop was investigated in this study. Pisum sativum L. seeds were exposed to different concentrations of phenthoate (0.1, 0.2, 0.3, 0.4, and 0.5%) and were germinated at 24°C for 72 hours and cytogenetic alterations were assessed. Analysis of mitotic index revealed that phenthoate has cytotoxic attributes, and cell proliferation kinetics frequencies showed alterations in the kinetics of the mitotic process. Phenthoate treatment of 0.1% to 0.5% resulted in an increase in the metaphases, and a reduction in prophases, anaphases, and telophases ratio, dose dependently. The findings of the study reveal that, phenthoate reduced the percentage of seed germination, mitotic index, radicle length and increased chromosomal abnormalities dose dependently. Root tip cells of Pisum sativum L. seeds treated with phenthoate showed an increased occurrence of single and double bridges, fragments, stickiness, laggard, and vagrants.

Downloads

Download data is not yet available.

References

Abdel-Halim KY, Osman SR. 2020. Cytotoxicity and oxidative stress responses of imidacloprid and glyphosate in human prostate epithelial wpm-y. 1 cell line. J. Toxicol. 4364650.

Abdelsalam NR, Abdel-Megeed A, Ghareeb RY, Ali HM, Salem MZ, Akrami M, Al-Hayalif, MF, Desoky ESM. 2022. Genotoxicity assessment of amino zinc nanoparticles in wheat (Triticum aestivum L.) as cytogenetical perspective. Saudi J. Biol. Sci. 29: 2306–2313.

Acar A, Singh D, Srivastava AK. 2022. Assessment of the ameliorative effect of curcumin on pendimethalin-induced genetic and biochemical toxicity. Sci. Rep. 12: 1–16.

Acar A. 2021. In vivo toxicological assessment of diquat dibromide: cytotoxic, genotoxic, and biochemical approach. Environ. Sci and Pollut Res. 28(34): 47550–61.

Afaf N, Abdel R, Amany AR, Mohamed ND, Mohamed FM, Farag LS, Alqahtani MA, Nassan Saed AAl Thobaiti, Nesma IEl-Naseery. 2022. Appraisal of sub-chronic exposure to lambada-cyhalothrin and/or methomyl on the behavior and hepato-renal functioning in Oreochromis niloticus: Supportive role of taurine-supplemented feed. Aquat. Toxicol. 250:106257.

Ajermoun N, Aghris S, Ettadili F, Alaoui OT, Laghrib F, Farahi A, Lahrich S, Bakasse M, Saqrane S, El Mhammedi MA. 2022. Phytotoxic effect of the insecticide imidacloprid in Phaseolus vulgaris L. plant and evaluation of its bioaccumulation and translocation by electrochemical methods. Environ. Res. 214: 113794.

Aktar MW, Sengupta D, Chowdhury A. 2009. Impact of pesticides use in agriculture: Their benefits and hazards. Interdiscip. Toxicol. 2: 1–12.

Anderson SE, Meade BJ. 2014. Potential health effects associated with dermal exposure to occupational chemicals. Environ. Health Insights. 8: EHI-S15258

Bano A, Gupta A, Rai S, Fatima T, Sharma S, Pathak N. 2022. Mechanistic role of reactive oxygen species and its regulation via the antioxidant system under environmental stress. In Plant Stress Physiology—Perspectives in Agriculture; IntechOpen: London,UK, 2022. [CrossRef]

Barbara LA, William TM, Bugg MW. 1991. Effects of herbicide dithiopyr on cell division in wheat root tips. Pest. Biochem. Physiol. 39:110–120.

Bedford C. Robinson J. 1972. The alkylating properties of organophosphates. Xenobiotica. 4: 307–337

Bonciu E, Firbas P, Fontanetti CS, Wusheng J, Karaismailoglu MC, Donghua Liu, Menicucci F, Pesnya DS, Popescu A, Romanovsky AV, Schiff S, ?lusarczyk J, de Souza CP, Srivastava A, Sutan A, Papini A. 2018. An evaluation for the standardization of the Allium cepa test as cytotoxicity and genotoxicity assay. Caryologia, 71(3): 191–209.

Camilo-Cotrim CF, Bailao EFLC, Ondei LS, Carneiro MF, Almeida LM. 2022. What can the Allium cepa test say about pesticide safety? A review. Environ. Sci. Pollut. Res. 29: 48088–48104.

Carvalho FP. 2017. Pesticides, environment, and food safety. Food Energy Secur. 6: 48–60.

Castellanos NL, Smagghe G, Taning CNT, Oliveira EE and Christiaens O. 2022. Risk assessment of RNAi-based pesticides to non-target organisms: Evaluating the effects of sequence similarity in the parasitoid wasp Telenomus podisi. Sci. Total Environ. 832:154746.

Chang C, Chen M, Gao J, Luo J, Wu K, Dong T, Zhou K, He X, Hu W, Wu W. 2017. Current pesticide profiles in blood serum of adults in jiangsu province of china and a comparison with other countries. Environ. Int. 102: 213–222.

Damalas CA, Eleftherohorinos IG. 2011. Pesticide exposure, safety issues, and risk assessment indicators. Int. J. Environ. Res. Public Health. 8: 1402–1419.

Das T, Hazra S, Sengupta S, Hazra P, Chattopadhyay D. 2021. Genotoxic effect of saccharin on Allium cepa root tips. Biologia. 76: 3191–3199.

Degraeve N, Chollet M, Moutschen J. 1984. Cytogenetic and genetic effects of sub-chronic treatments with organophosphorus insecticides. Arch. Yoxicol. 55: 66–67.

Dong C, Zhou J, Zuo W, Li Z, Li J. 2022. Enantioselective determination of phenthoate enantiomers in plant-origin matrices using reversed-phase high performance liquid chromatography?tandem mass spectrometry. Biomed. Chromatogr. 36 (1): e5229.

El-Houseiny, Algharib W, Mohamed SA, Metwally EA, Mahmoud MM, Alghamdi YK, Soliman YS, Abd-Elhakim MM, El-Murr AE. 2022. Dietary parsley seed mitigates methomyl-induced impaired growth performance, hemato-immune suppression, oxidative stress, hepato-renal damage, and pseudomonas aeruginosa susceptibility in Oreochromis niloticus. Antioxidants. 11(6):1185.

Esturk O, Yakar Y, Ayhan Z. 2014. Pesticide residue analysis in parsley, lettuce and spinach by LC-MS/MS. J FOOD SCI TECH MYS. 51: 458–466.

Gogoi JY, Karabi D, Dutta PA. 2021. Effect of preservatives and pesticides on mitotic index of Allium cepa roots-biological model experiment for genotoxicity. Poll. Res. 40: 777–781.

Hernández AF, Parrón T, Tsatsakis AM, Requena M, Alarcón R, López-Guarnido O. 2013. Toxic effects of pesticide mixtures at a molecular level: their relevance to human health. Toxicology. 307:136–145.

Ismail C, Atilla Y, Yusuf T, Levent O. 2009. Glyphosate reduced seed and leaf concentrations of calcium, manganese, magnesium and iron in non-glyphosate resistant soybean. Eur. J. Agron. 31: 114–119.

Jablonski CA, Pereira TCB, Teodoro LDS, Altenhofen S, Rübensam G, Bonan CD, Bogo MR. 2022. Acute toxicity of methomyl commercial formulation induces morphological and behavioral changes in larval zebrafish (Danio rerio). Neurotoxicol Teratol. 89:107058

Kalefetoglu Macar T. 2021. Investigation of cytotoxicity and genotoxicity of abamectin pesticide in Allium cepa L. Environ. Sci. Pollut. Res. 28: 2391–2399.

Kaur H, Hundal SS, Singh J. 2022. Imidacloprid affects the reproductive performance and genotoxicity in Eudrilus eugeniae and Metaphire posthuma. Turk. J. Agric.-Food Sci. Technol. 1–10.

Khan Z, Ansari MYK, Shahwar D. (Eds.) Induced genotoxicity and oxidative stress in plants; Springer: Singapore, 2021; ISBN 978-981-16-2074-4.

Kim KH, Kabir E, Jahan SA. 2017. Exposure to pesticides and the associated human health effects. Sci. Total Environ. 575: 525–535.

Liman R, Aky?l D, Eren Y, Konuk M. 2010. Testing of the mutagenicity and genotoxicity of metolcarb by using both Ames/Salmonella and Allium test. Chemosphere. 80(9):1056–1061.

Liman R, Ali MM, Istifli ES, Cigerci IH, Bonciu E. 2022. Genotoxic and cytotoxic effects of pethoxamid herbicide on Allium cepa cells and its molecular docking studies to unravel genotoxicity mechanism. Environ. Sci. Pollut. Res. 29: 63127–63140.

Lozier MJ, Montoya JFL, Del Rosario A, Martinez EP, Fuortes L, Cook TM, Sanderson, WT. 2013. Personal air sampling and risks of inhalation exposure during atrazine application in honduras. Int. Arch. Occup. Environ. Health. 86: 479–488.

Lukaszewicz G, Fernando G, Iturburu DSG, Mirta, LM, Stephan P. 2019. Imidacloprid modifies the mitotic kinetics and causes both aneugenic and clastogenic effects in the macrophyte Bidens laevis L. Heliyon. 5: e02118.

Macfarlane E, Carey R, Keegel T, El-Zaemay S, Fritschi L. 2013. Dermal exposure associated with occupational end use of pesticides and the role of protective measures. Saf. Health Work. 4:136–141.

Mahapatra K, De S, Banerjee S, Roy S. 2019. Pesticide mediated oxidative stress induces genotoxicity and disrupts chromatin structure in fenugreek (Trigonella foenum-graecum L.) seedlings. J. Hazard. Mater. 369: 362–374. [CrossRef]

Marc J, Mulner-Lorillon O, Boulben S, Hureau D, Durand G, Belle R. 2002. Pesticide roundup provokes cell division dysfunction at the level of CDK1/Cyclin B activation. Chem. Res. Toxicol. 15: 326–331.

Nara A, Yamada C, Kodama T, Saka K, Takagi T. 2018. Fatal poisoning with both dichlorvos and phenthoate. J. Forensic Sci. 63:1928-1931.

Nelson CM, Jalal SM, Larson OR. 1990. Genotoxicity of organophosphorus insecticide chlorpyrifos based on human lkymphocyte culture. Cytologia 55: 589-592.

Ogut S. 2019. Genotoxic effects of pesticides. J. Environ. Prot. Ecol. 20: 224–229.

Ozel CA, Unal F, Avuloglu-Yilmaz E, Erikel E, Mirici S, Yuzbasioglu D. 2022. Determination of genotoxic damages of picloram and dicamba with comet assay in Allium cepa rooted in tissue culture and distilled water. Molecular Biology Reports. 49(12):11273-80.

Ozkul M, Ozel CA, Yuzba??oglu D, Unal F. 2016. Does 2,4-dichlorophenoxyacetic acid (2,4-D) induce genotoxic effects in tissue cultured Allium roots? Cytotechnology. 68(6):2395–2405.

Pesavento PA, Agnew D, Keel MK, Woolard KD. 2018. Cancer in wildlife: Patterns of emergence. Nat. Rev. Cancer.18: 646–661.

Ping KY, Darah I, Yusuf UK, Yeng C, Sasidharan S. 2012. Genotoxicity of Euphorbia hirta: an Allium cepa assay. Molecules.17(7):7782–7791.

Priya JS, Purushothaman P, Hannah C, Matthew S, Thomas S. 2014. Genotoxic effect of ethephon on the root meristems of Allium cepa L. Commun Plant Sci. 4:19–22.

Qian XW. 1998. Improvement on experiment method of micronucleus in root tip cell of Vicia faba. J Wenzhou Norm Coll. 19: 64–65.

Rahman ANA, Mansour DA, Abd El-Rahman GI, Elseddawy NM, Zaglool AW, Khamis T, Mahmoud SF, Mahboub HH. 2022. Imidacloprid toxicity in Clarias gariepinus: Protective role of dietary Hyphaene thebaica against biochemical and histopathological disruption, oxidative stress, immune genes expressions, and Aeromonas sobria infection. Aquaculture. 555: 738170.

Sammaiah D, Shekar CC, Prasad VR, Reddy KJ. 2011. Pesticides induced alterations in physiological responses in Solanum melongena L. Int. J. Pharma Bio Sci. 2: 383.

Sandhu SS, Chander P, Singh J, Sidhu AS. 1987. Effect of insecticidal sprays on the plant and secondary pest inductions in Hirsutum cotton in Punjab. Agric. Ecosyst. Environ. 19(2):169–176.

Savaskan C, Toker MC. 1991. The effects of various doses gamma irradiation on the seed germination and root tips chromosomes of rye (Secales cereals L.). Turk. J. Bot. 15: 349–359.

Sengupta A, Sengupta RK. 2022. Genotoxic effects of profenophos on Pisum sativum. J. Agric. Appl. Biol. 3: 1–7.

Sharma A, Kumar V, Shahzad B, Tanveer M, Sidhu GPS, Handa N, Kohli SK, Yadav P, Bali AS, Parihar RD. et al. 2019. et al. Worldwide pesticide usage and its impacts on ecosystem. SN Appl. Sci. 1: 1446.

Siddiqui S, Al-Rumman S. 2020 a. Clethodim induced pollen sterility and meiotic abnormalities in vegetable crop Pisum sativum L. Caryologia. 73: 37–44.

Siddiqui S, Al-Rumman S. 2020 b. Cytological changes induced by clethodim in Pisum sativum plant. Bangladesh J. Bot. 49(2):367–374.

Siddiqui S, Al-Rumman S. 2022 a. Methomyl, imbraclaobrid and clethodim induced cytomixis and syncytes behaviors in PMCs of Pisum sativum L: Causes and outcomes. Saudi J Biol Sci. 29(9):103390. doi: 10.1016/j.sjbs.2022.103390.

Siddiqui S, Al-Rumman S. 2022 b. Exposure of Pisum sativum L. seeds to methomyl and imidacloprid cause genotoxic effects in pollen-mother cells. Biology. 11: 1549. https://doi.org/10.3390/ biology11111549

Siddiqui S, Khan SS, Meghvansi MK, Nazoora SA. 2008. Mutagenic effect of herbicide maleic hydrazide on seed germination and radicle length on Trigonella foenum-graecum. Indian J. Appl. Pure Biol. 23: 103–106.

Siddiqui S, Meghvansi MK, Khan SS. 2012. Glyphosate, alachor and maleic hydrazide have genotoxic effect on Trigonella foenum graecum L. Bull. Environ. Contam. Toxicol. 88: 659–665.

Somaiah K, Satish PVV, Sunita K, Nagaraju B, Oyebola OO. 2014. Toxic impact of phenthoate on protein and glycogen levels in certain tissues of Indian major carp Labeo rohita (Hamilton). J. environ. sci., toxicol. food technol. 8(9): 65–73.

Strassemeyer J, Daehmlow D, Dominic A, Lorenz S, Golla B. 2017. Synops-Web, an online tool for environmental risk assessment to evaluate pesticide strategies on field level. Crop Prot. 97: 28–44.

Taufeeq A, Baqar M, Sharif F, Mumtaz M, Ullah S, Aslam S, Qadir A, Majid, M.; Jun, H. 2021. Assessment of organochlorine pesticides and health risk in tobacco farming associated with river Barandu of Pakistan. Environ. Sci. Pollut. Res. 28: 38774–38791.

Tudi M, Wang L, Ruan HD, Tong S, Atabila A, Sadler R, Yu QJ, Connell D, Phung DT. 2022. environmental monitoring and potential health risk assessment from pymetrozine exposure among communities in typical rice-growing areas of China.Environ. Sci. Pollut. Res.1–14.

Velazquez G, Pérez B, Rodríguez V, Handal A. 2022. Genotoxicity and cytotoxicity of Sambucus canadensis ethanol extract in meristem cells of Allium sativum. Caryologia.75(1): 99–107.

Yadav IC, Devi NL, Syed JH, Cheng Z, Li J, Zhang G, Jones KC. 2015. Current status of persistent organic pesticides residues in air, water, and soil, and their possible effect on neighboring countries: a comprehensive review of India. Sci. Total Environ. 511:123–137.

Zhang Y, Huang L, Liu L, Cao X, Sun C, Lin X. 2022. Metabolic disturbance in lettuce (Lactuca sativa) plants triggered by imidacloprid and fenvalerate. Sci. Total Environ. 802:149764.

Downloads

Published

2023-09-19

How to Cite

Siddiqui, S. (2023). Phenthoate toxicity evaluation in root meristem of Pisum sativum L. Caryologia, 76(1), 57–66. https://doi.org/10.36253/caryologia-2036

Issue

Section

Articles