Amelioration strategy of saline stress in wheat with salicylic acid: a review

Authors

  • Syeda Afia Fairoj Department of Agronomy, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur-1706, Bangladesh
  • Uttam Kumar Ghosh Department of Agronomy, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur-1706, Bangladesh
  • Md. Moshiul Islam Department of Agronomy, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur-1706, Bangladesh https://orcid.org/0000-0001-7588-6414
  • Khurshida Jahan Department of Agronomy, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur-1706, Bangladesh
  • Anamika Department of Agronomy, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur-1706, Bangladesh
  • Sazada Siddiqui Department of Biology, College of Science, King Khalid University, Abha-61413, Saudi Arabia
  • Mohammed O. Alshaharani Department of Biology, College of Science, King Khalid University, Abha-61413, Saudi Arabia
  • Ayesha Siddiqua Department of Clinical Pharmacy, King Khalid University, Abha-61413, Saudi Arabia
  • Habab Merghani Yassin Department of Biology, College of Science, King Khalid University, Abha-61413, Saudi Arabia

DOI:

https://doi.org/10.36253/caryologia-2812

Keywords:

salt stress, wheat, salicylic acid, morpho-physiology, productivity, autophagy

Abstract

Salinity, an adverse abiotic stress, is lowering the productivity of agricultural crops including wheat worldwide. It creates obstacles in normal crop growth and development. Salinity is affecting the morpho-physiology and productivity of wheat. It is also responsible for inducing oxidative, osmotic and ionic stress (high Na+/K+ ratio), while decreasing the K+ concentrations in plants. Many insights indicate a positive relationship between salicylic acid application and improvement of the morpho-physiological attributes and productivity of wheat both in saline and non-saline conditions. Salinity-induced morphological and physiological alterations have resulted in a drastic decline in wheat yields globally. Morpho-physiological parameters and yield contributing parameters are correlated with each other. Salinity stress reduces the shoot length, shoot fresh mass, root length, root fresh mass, leaf area, leaf fresh weight, number of tillers, shoot dry mass, root dry mass, leaf dry weight, chlorophyll contents (SPAD), leaf relative water content, stomatal conductance, photosynthetic rate, transpiration, CO2 assimilation rate, internal CO2 concentration, spikelets per spike, grain weight per spike, number of grains per spike grain yield, straw yield, biological yield, harvest index in wheat. It also induces autophagy and programmed cell death in wheat. Application of salicylic acid on saline stressed wheat significantly improves all the aforementioned parameters along with maintaining lower Na+ concentrations and a Na+/K+ ratio. Furthermore, salicylic acid alleviates the detrimental effects of salt stress ultimately promoting salt tolerance in wheat. Hence, this paper aims to provide a comprehensive review of major research advances on amelioration of salinity on morpho-physiology and productivity of wheat by the application of salicylic acid.

Downloads

Download data is not yet available.

References

Aazami, M.A., Maleki, M., Rasouli, F. and Gohari, G., 2023. Protective effects of chitosan based salicylic acid nanocomposite (CS-SA NCs) in grape (Vitis vinifera cv.‘Sultana’) under salinity stress. Scientific Reports, 13(1), p.883.

Abdel-Lattif, H.M., Abbas, M.S. and Taha, M.H., 2019. Effect of salicylic acid on productivity and chemical constituents of some wheat (Triticum aestivum L.) varieties grown under saline conditions. JAPS: Journal of Animal & Plant Sciences, 29(4).

Abdi, N., Van Biljon, A., Steyn, C. and Labuschagne, M.T., 2022. Salicylic acid improves growth and physiological attributes and salt tolerance differentially in two bread wheat cultivars. Plants, 11(14), p.1853.

Abrar, M.M., Sohail, M., Saqib, M., Akhtar, J., Abbas, G., Wahab, H.A., Mumtaz, M.Z., Mehmood, K., Memon, M.S., Sun, N. and Xu, M., 2022. Interactive salinity and water stress severely reduced the growth, stress tolerance, and physiological responses of guava (Psidium guajava L.). Scientific Reports, 12(1), p.18952.

Afzal, I., Basra, S.M., Farooq, M. and Nawaz, A.A.M.I.R., 2006. Alleviation of salinity stress in spring wheat by hormonal priming with ABA, salicylic acid and ascorbic acid. Int. J. Agric. Biol, 8(1), pp.23-28.

Ahmad, N., Irfan, A., Ahmad, H.R., Salma, H., Tahir, M., Tamimi, S.A., Sajid, Z., Liaquat, G., Nadeem, M., Ali, M. and Abbasi, G.H., 2023. Impact of Changing Abiotic Environment on Photosynthetic Adaptation in Plants. In New Frontiers in Plant-Environment Interactions: Innovative Technologies and Developments (pp. 385-423). Cham: Springer Nature Switzerland.

Akher, S.A., Sarker, M.N.I. and Naznin, S., 2018. Salt Stress Mitigation by Salicylic Acid in Wheat for Food Security in Coastal Area of Bangladesh. Journal of Plant Stress Physiology, 4, pp.07-16.

Al-Khafaji, Z.H. and Al-Burki, F.R., 2021, November. Study of the effect of salt stress and kinetin and their interaction on the growth and yield of wheat (Triticum aestivum L.). In IOP Conference Series: Earth and Environmental Science (Vol. 923, No. 1, p. 012084). IOP Publishing.

Ali, E., Hussain, S., Jalal, F., Khan, M.A., Imtiaz, M., Said, F., Ismail, M., Khan, S., Ali, H.M., Hatamleh, A.A. and Al-Dosary, M.A., 2023. Salicylic acid-mitigates abiotic stress tolerance via altering defense mechanisms in Brassica napus (L.). Frontiers in Plant Science, 14.

Ali, R., Gul, H., Hamayun, M., Rauf, M., Iqbal, A., Hussain, A. and Lee, I.J., 2022. Endophytic fungi controls the physicochemical status of maize crop under salt stress. Pol. J. Environ. Stud, 31, pp.561-573.

Arif, Y., Singh, P., Mir, A.R., Alam, P. and Hayat, S., 2023. Insights into salicylic acid-mediated redox homeostasis, carbohydrate metabolism and secondary metabolite involvement in improvement of photosynthetic performance, enzyme activities, ionomics, and yield in different varieties of Abelmoschus esculentus. Plant Physiology and Biochemistry, 203, p.108047.

Arikan, B., Yildiztugay, E. and Ozfidan-Konakci, C., 2023. Responses of salicylic acid encapsulation on growth, photosynthetic attributes and ROS scavenging system in Lactuca sativa exposed to polycyclic aromatic hydrocarbon pollution. Plant Physiology and Biochemistry, 203, p.108026.

Askari, M., Hamid, N., Abideen, Z., Zulfiqar, F., Moosa, A., Nafees, M. and El-Keblawy, A., 2023. Exogenous melatonin application stimulates growth, photosynthetic pigments and antioxidant potential of white beans under salinity stress. South African Journal of Botany, 160, pp.219-228.

Austin, A.T. and Ballaré, C.L., 2023. Attackers gain the upper hand over plants in the face of rapid global change. Current Biology, 33(11), pp.R611-R620.

Azeem, M., Sultana, R., Mahmood, A., Qasim, M., Siddiqui, Z.S., Mumtaz, S., Javed, T., Umar, M., Adnan, M.Y. and Siddiqui, M.H., 2023. Ascorbic and Salicylic Acids Vitalized Growth, Biochemical Responses, Antioxidant Enzymes, Photosynthetic Efficiency, and Ionic Regulation to Alleviate Salinity Stress in Sorghum bicolor. Journal of Plant Growth Regulation, pp.1-14.

Azeem, M., Pirjan, K., Qasim, M., Mahmood, A., Javed, T., Muhammad, H., Yang, S., Dong, R., Ali, B. and Rahimi, M., 2023b. Salinity stress improves antioxidant potential by modulating physio-biochemical responses in Moringa oleifera Lam. Scientific Reports, 13(1), p.2895.

Batista, V.C.V., Pereira, I.M.C., de Oliveira Paula-Marinho, S., Canuto, K.M., Pereira, R.D.C.A., Rodrigues, T.H.S., de Menezes Daloso, D., Gomes-Filho, E. and de Carvalho, H.H., 2019. Salicylic acid modulates primary and volatile metabolites to alleviate salt stress-induced photosynthesis impairment on medicinal plant Egletes viscosa. Environmental and Experimental Botany, 167, p.103870.

Ben Youssef, R., Boukari, N., Abdelly, C. and Jelali, N., 2023. Mitigation of salt stress and stimulation of growth by salicylic acid and calcium chloride seed priming in two barley species. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology, pp.1-11.

Biswas, D., Mannan, M.A., Karim, M.A. and Miah, M.Y., 2019. Amelioration of salinity tolerance in foxtail millet by applying plant growth regulators. Bangladesh Agronomy Journal, 22(2), pp.25-39.

Blonder, B.W., Aparecido, L.M.T., Hultine, K.R., Lombardozzi, D., Michaletz, S.T., Posch, B.C., Slot, M. and Winter, K., 2023. Plant water use theory should incorporate hypotheses about extreme environments, population ecology, and community ecology. New Phytologist, 238(6), pp.2271-2283.

Cornelia, P., Petrus, A., Pop, L., Chis, A. and Bandici, G.E., 2010. Exogenous salicylic acid involvement on some physiological parameters amelioration in salt stressed wheat (Triticum aestivum) plantlets. Analele Universitatii din Oradea, Fascicula: Protectia Mediului, 15, pp.160-165.

Corti, E., Falsini, S., Schiff, S., Tani, C., Gonnelli, C. and Papini, A., 2023a. Saline stress impairs lipid storage mobilization during germination in eruca sativa. Plants, 12(2), p.366.

Corti, E., Falsini, S., Gonnelli, C., Pieraccini, G., Nako, B. and Papini, A., 2023b. Salt-Affected Rocket Plants as a Possible Source of Glucosinolates. International Journal of Molecular Sciences, 24(6), p.5510.

Dabravolski, S.A. and Isayenkov, S.V., 2023. The regulation of plant cell wall organisation under salt stress. Frontiers in Plant Science, 14, p.1118313.

Desire, M. and Arslan, H., 2021. The effect of salicylic acid on photosynthetic characteristics, growth attributes, and some antioxidant enzymes on parsley (petroselinum crispum L.) under salinity stress. Gesunde Pflanzen, 73(4), pp.435-444.

Desoky, E.S.M. and Merwad, A.R.M., 2015. Improving the salinity tolerance in wheat plants using salicylic and ascorbic acids. Journal of Agricultural Science, 7(10), p.203.

Elhindi, K.M., Almana, F.A. and Al-Yafrsi, M.A., 2023. Morpho-Biochemical Modification of Petunia to Saline Water and Salicylic Acid Applications. Horticulturae, 9(11), p.1197.

EL Sabagh, A., Islam, M.S., Skalicky, M., Ali Raza, M., Singh, K., Anwar Hossain, M., Hossain, A., Mahboob, W., Iqbal, M.A., Ratnasekera, D. and Singhal, R.K., 2021. Salinity stress in wheat (Triticum aestivum L.) in the changing climate: Adaptation and management strategies. Frontiers in Agronomy, 3, p.661932.

Esmaeili, S., Sharifi, M., Ghanati, F., Soltani, B.M., Samari, E. and Sagharyan, M., 2023. Exogenous melatonin induces phenolic compounds production in Linum album cells by altering nitric oxide and salicylic acid. Scientific Reports, 13(1), p.4158.

Fadiji, A.E., Yadav, A.N., Santoyo, G. and Babalola, O.O., 2023. Understanding the plant-microbe interactions in environments exposed to abiotic stresses: An overview. Microbiological Research, p.127368.

Fairoj, S.A., Islam, M.M., Islam, M.A., Zaman, E., Momtaz, M.B., Hossain, M.S., Jahan, N.A., Shams, S.N.U., Urmi, T.A., Rasel, M.A. and Khan, M.A.R., 2023. Salicylic acid improves agro-morphology, yield and ion accumulation of two wheat (Triticum aestivum l.) genotypes by ameliorating the impact of salt stress. Agronomy, 13(1), p.25.

Fan, Y., Lv, Z., Li, Y., Qin, B., Song, Q., Ma, L., Wu, Q., Zhang, W., Ma, S., Ma, C. and Huang, Z., 2022. Salicylic acid reduces wheat yield loss caused by high temperature stress by enhancing the photosynthetic performance of the flag leaves. Agronomy, 12(6), p.1386.

Fardus, J., Matin, M.A., Hasanuzzaman, M. and Hossain, M.A., 2018. Salicylic acid-induced improvement in germination and growth parameters of wheat under salinity stress. JAPS: Journal of Animal & Plant Sciences, 28(1).

Fedoreyeva, L.I., Lazareva, E.M., Shelepova, O.V., Baranova, E.N. and Kononenko, N.V., 2022. Salt-induced autophagy and programmed cell death in wheat. Agronomy, 12(8), p.1909.

Feng, D., Gao, Q., Liu, J., Tang, J., Hua, Z. and Sun, X., 2023. Categories of exogenous substances and their effect on alleviation of plant salt stress. European Journal of Agronomy, 142, p.126656.

Ghafiyehsanj, E., Dilmaghani, K. and Shoar, H.H., 2013. The effects of salicylic acid on some of biochemical characteristics of wheat (Triticum aestivum L.) under salinity stress. Annals of Biological Research, 4(6), pp.242-248.

Gandahi, N., Baloch, A.W., Sarki, S.M., Lund, M.M. and Kandhro, M.N., 2020. Correlation Analysis Between Morphological, Physiological And Yield Traits Under Salinity Stress Condition In Wheat (Triticum Aestivum L.) Genotypes. Pakistan Journal of Agriculture, Agricultural Engineering and Veterinary Sciences, 36(2), pp.129-134.

Ghosh, U.K., Islam, M.N., Siddiqui, M.N., Cao, X. and Khan, M.A.R., 2022. Proline, a multifaceted signalling molecule in plant responses to abiotic stress: understanding the physiological mechanisms. Plant Biology, 24(2), pp.227-239.

Hadjadj, S., Mahdjoubi, S., Hidoub, Y., Bahaz, T., Ghedamsi, Z., Regagda, S., Arfa, Y. and El Hadj-Khelil, A.O., 2023. Comparative effects of NaCl and Na2SO4 on germination and early seedling stages of the halophyte Carthamus tinctorius L. Journal of Applied Research on Medicinal and Aromatic Plants, 35, p.100463.

Hafez, E.M., 2016. Influence of salicylic acid on ion distribution, enzymatic activity and some agromorphological characteristics of wheat under salt-affected soil. Egyptian Journal of agronomy, 38(3), pp.455-469.

Hanaoka, H., Noda, T., Shirano, Y., Kato, T., Hayashi, H., Shibata, D., Tabata, S. and Ohsumi, Y., 2002. Leaf senescence and starvation-induced chlorosis are accelerated by the disruption of an Arabidopsis autophagy gene. Plant Physiology, 129(3), pp.1181-1193.

Hayat, K., Zhou, Y., Menhas, S., Hayat, S., Aftab, T., Bundschuh, J. and Zhou, P., 2022. Salicylic acid confers salt tolerance in Giant Juncao through modulation of redox homeostasis, ionic flux, and bioactive compounds: an ionomics and metabolomic perspective of induced tolerance responses. Journal of Plant Growth Regulation, 41(5), pp.1999-2019.

Hossain, A.A., Halim, M.A., Hossain, F. and Maher Niger, M.A., 2006. Effects of NaCl salinity on some physiological characters of wheat (Triticum aestivum L.). Bangladesh J. Bot, 35(1), pp.9-15.

Hu, C.H., Zheng, Y., Tong, C.L. and Zhang, D.J., 2022. Effects of exogenous melatonin on plant growth, root hormones and photosynthetic characteristics of trifoliate orange subjected to salt stress. Plant Growth Regulation, 97(3), pp.551-558.

Hussain, S., Hafeez, M.B., Azam, R., Mehmood, K., Aziz, M., Ercisli, S., Javed, T., Raza, A., Zahra, N., Hussain, S. and Ren, X., 2023. Deciphering the role of phytohormones and osmolytes in plant tolerance against salt stress: Implications, possible cross-talk, and prospects. Journal of Plant Growth Regulation, pp.1-22.

Iftikhar, I., Shahbaz, M. and Wahid, M.A., 2023. Potential role of foliage applied strigolactone (GR24) on photosynthetic pigments, gas exchange attributes, mineral nutrients and yield components of Zea mays (L.) under saline regimes. Gesunde Pflanzen, 75(3), pp.577-591.

Iqbal, M.S., Zahoor, M., Akbar, M., Ahmad, K.S., Hussain, S.A., Munir, S., Ali, M.A., Arshad, N., Masood, H., Zafar, S. and Ahmad, T., 2022. Alleviating the deleterious effects of salt stress on wheat (Triticum aestivum L.) By foliar application of gibberellic acid and salicylic acid. Applied Ecology & Environmental Research, 20(1).

Jalili, I., Ebadi, A., Askari, M.A., KalatehJari, S. and Aazami, M.A., 2023. Foliar application of putrescine, salicylic acid, and ascorbic acid mitigates frost stress damage in Vitis vinifera cv. ‘Giziluzum’. BMC Plant Biology, 23(1), pp.1-15.

Jangra, M., Devi, S. and Kumar, N., 2023. Impact of Foliar Application of Salicylic Acid on Physiological Performance of Sorghum (Sorghum bicolor L.) under Salt Stress. Agricultural Research Journal, 9(2).

Jing, H., Wilkinson, E.G., Sageman-Furnas, K. and Strader, L.C., 2023. Auxin and abiotic stress responses. Journal of Experimental Botany, p.erad325.

Kabbage, M., Kessens, R., Bartholomay, L.C. and Williams, B., 2017. The life and death of a plant cell. Annual Review of Plant Biology, 68(1), pp.375-404.

Kaya, C., Ugurlar, F., Ashraf, M. and Ahmad, P., 2023. Salicylic acid interacts with other plant growth regulators and signal molecules in response to stressful environments in plants. Plant Physiology and Biochemistry.

Khan, I., Ali, S.M., Chattha, M.U., Barbanti, L., Calone, R., Mahmood, A., Albishi, T.S., Hassan, M.U. and Qari, S.H., 2023. Neem and Castor Oil–Coated Urea Mitigates Salinity Effects in Wheat by Improving Physiological Responses and Plant Homeostasis. Journal of Soil Science and Plant Nutrition, pp.1-17.

Khan, M.I., Shoukat, M.A., Cheema, S.A., Ali, S., Azam, M., Rizwan, M., Qadri, R. and Al-Wabel, M.I., 2019. Foliar-and soil-applied salicylic acid and bagasse compost addition to soil reduced deleterious effects of salinity on wheat. Arabian Journal of Geosciences, 12, pp.1-9.

Khanam, T., Akhtar, N., Halim, M.A. and Hossain, F., 2018. Effect of irrigation salinity on the growth and yield of two Aus rice cultivars of Bangladesh. Jahangirnagar University Journal of Biological Sciences, 7(2), pp.1-12.

Kumar, A., Dhansu, P. and Mann, A. eds., 2023. Salinity and Drought Tolerance in Plants: Physiological Perspectives. Springer Nature.

Kumar, P., Choudhary, M., Halder, T., Prakash, N.R., Singh, V., V, V.T., Sheoran, S., Longmei, N., Rakshit, S. and Siddique, K.H., 2022. Salinity stress tolerance and omics approaches: Revisiting the progress and achievements in major cereal crops. Heredity, 128(6), pp.497-518.

Liu, Z., Zhao, M., Zhang, H., Ren, T., Liu, C. and He, N., 2023. Divergent response and adaptation of specific leaf area to environmental change at different spatio‐temporal scales jointly improve plant survival. Global Change Biology, 29(4), pp.1144-1159.

Liu, J., Shao, Y., Feng, X., Otie, V., Matsuura, A., Irshad, M., Zheng, Y. and An, P., 2022. Cell wall components and extensibility regulate root growth in Suaeda salsa and Spinacia oleracea under salinity. Plants, 11(7), p.900.

Liu, Y., Xiong, Y. and Bassham, D.C., 2009. Autophagy is required for tolerance of drought and salt stress in plants. Autophagy, 5(7), pp.954-963.

Loudari, A., Latique, S., Mayane, A., Colinet, G. and Oukarroum, A., 2023. Polyphosphate fertilizer impacts the enzymatic and non-enzymatic antioxidant capacity of wheat plants grown under salinity. Scientific Reports, 13(1), p.11212.

Loutfy, N., Sakuma, Y., Gupta, D.K. and Inouhe, M., 2020. Modifications of water status, growth rate and antioxidant system in two wheat cultivars as affected by salinity stress and salicylic acid. Journal of plant research, 133, pp.549-570.

Mao, H., Jiang, C., Tang, C., Nie, X., Du, L., Liu, Y., Cheng, P., Wu, Y., Liu, H., Kang, Z. and Wang, X., 2023. Wheat adaptation to environmental stresses under climate change: Molecular basis and genetic improvement. Molecular Plant.

Mangal, V., Lal, M.K., Tiwari, R.K., Altaf, M.A., Sood, S., Kumar, D., Bharadwaj, V., Singh, B., Singh, R.K. and Aftab, T., 2023. Molecular insights into the role of reactive oxygen, nitrogen and sulphur species in conferring salinity stress tolerance in plants. Journal of Plant Growth Regulation, 42(2), pp.554-574.

Mariyam, S., Bhardwaj, R., Khan, N.A., Sahi, S.V. and Seth, C.S., 2023. Review on nitric oxide at the forefront of rapid systemic signaling in mitigation of salinity stress in plants: Crosstalk with calcium and hydrogen peroxide. Plant Science, p.111835.

Masarmi, A.G., Solouki, M., Fakheri, B., Kalaji, H.M., Mahgdingad, N., Golkari, S., Telesiński, A., Lamlom, S.F., Kociel, H. and Yousef, A.F., 2023. Comparing the salinity tolerance of twenty different wheat genotypes on the basis of their physiological and biochemical parameters under NaCl stress. Plos one, 18(3), p.e0282606.

Methenni, K., Abdallah, M.B., Nouairi, I., Smaoui, A., Zarrouk, M. and Youssef, N.B., 2018. Salicylic acid and calcium pretreatments alleviate the toxic effect of salinity in the Oueslati olive variety. Scientia Horticulturae, 233, pp.349-358.

Morad, M., Sara, S., Mohammad, D., Javad, R.M. and Majid, R., 2013. Effect of salicylic acid on alleviation of salt stress on growth and some physiological traits of wheat. International Journal of Biosciences, 3(2), pp.20-27.

Mousavi, S.S., Karami, A. and Maggi, F., 2022. Photosynthesis and chlorophyll fluorescence of Iranian licorice (Glycyrrhiza glabra l.) accessions under salinity stress. Frontiers in Plant Science, 13, p.984944.

Naz, M., Ghani, M.I., Atif, M.J., Raza, M.A., Bouzroud, S., Afzal, M.R., Riaz, M., Ali, M., Tariq, M. and Fan, X., 2023a. Sodium and Abiotic Stress Tolerance in Plants. Beneficial Chemical Elements of Plants: Recent Developments and Future Prospects, pp.307-330.

Naz, T., Iqbal, M.M., Akhtar, J. and Saqib, M., 2023b. Baseline hydroponic study for biofortification of bread wheat genotypes with iron and zinc under salinity: growth, ionic, physiological and biochemical adjustments. Journal of Plant Nutrition, 46(5), pp.743-764.

Noreen, S., Shaheen, A., Shah, K.H. and Ammara, U., 2019. Effects of Aerial Application of Salicylic Acid on Growth, Pigment Concentration, Ions Uptake and Mitigation of Salinity Stress in Two Varieties of Wheat (Triticum aestivum L.). Pakistan Journal of Life & Social Sciences, 17(2).

Omidi, M., Khandan-Mirkohi, A., Kafi, M., Zamani, Z., Ajdanian, L. and Babaei, M., 2022. Biochemical and molecular responses of Rosa damascena mill. cv. Kashan to salicylic acid under salinity stress. BMC Plant Biology, 22(1), pp.1-20.

Pai, R. and Sharma, P.K., 2023. Exogenous supplementation of salicylic acid ameliorates salt-induced membrane leakage, ion homeostasis and oxidative damage in Sorghum seedlings. Biologia, pp.1-21.

Pilot, G., Stransky, H., Bushey, D.F., Pratelli, R., Ludewig, U., Wingate, V.P. and Frommer, W.B., 2004. Overexpression of GLUTAMINE DUMPER1 leads to hypersecretion of glutamine from hydathodes of Arabidopsis leaves. The Plant Cell, 16(7), pp.1827-1840.

Pirasteh-Anosheh, H., Rahimpour, B., Mohammadi, H., Ranjbar, G. and Race, M., 2023. Induced salinity tolerance by salicylic acid through physiological manipulations. In Phytohormones and Stress Responsive Secondary Metabolites (pp. 99-109). Academic Press.

Prajapati, P., Gupta, P., Kharwar, R.N. and Seth, C.S., 2023. Nitric oxide mediated regulation of ascorbate-glutathione pathway alleviates mitotic aberrations and DNA damage in Allium cepa L. under salinity stress. International Journal of Phytoremediation, 25(4), pp.403-414.

Reggiori, F., Shintani, T., Chong, H., Nair, U. and Klionsky, D.J., 2005. Atg9 cycles between mitochondria and the pre-autophagosomal structure in yeasts. Autophagy, 1(2), pp.101-109.

Rostampour, P., Hamidian, M., Dehnavi, M.M. and Saeidimajd, G.A., 2023. Evaluation of osmoregulation and morpho-physiological responses of Borago officinalis under drought and salinity stress with equal osmotic potential. Biochemical Systematics and Ecology, 106, p.104567.

Rubio-Rodríguez, E., Vera-Reyes, I., Rodríguez-Hernández, A.A., López-Laredo, A.R., Ramos-Valdivia, A.C. and Trejo-Tapia, G., 2023. Mixed elicitation with salicylic acid and hydrogen peroxide modulates the phenolic and iridoid pathways in Castilleja tenuiflora plants. Planta, 258(1), p.20.

Saeed, S., Ullah, A., Ullah, S., Elshikh, M.S., Noor, J., Eldin, S.M., Zeng, F., Amin, F., Ali, M.A. and Ali, I., 2023. Salicylic acid and α-tocopherol ameliorate salinity impact on wheat. ACS omega, 8(29), pp.26122-26135.

Sarkar, A.K., Oraon, S., Mondal, S. and Sadhukhan, S., 2023. Effect of salinity on seed germination and seedling growth of bullet cultivar of chilli (Capsicum annuum L.). Brazilian Journal of Botany, 46(3), pp.513-525.

Sen, A., Islam, M.M., Zaman, E., Ghosh, U.K., Momtaz, M.B., Islam, M.A., Urmi, T.A., Mamun, M.A.A., Rahman, M.M., Kamal, M.Z.U. and Rahman, G.M., 2022. Agro-Morphological, Yield and Biochemical Responses of Selected Wheat (Triticum aestivum L.) Genotypes to Salt Stress. Agronomy, 12(12), p.3027.

Shah, S.M.O., Jamal, Y. and Haq, I.U., 2023. Effect of Humic acid on Wheat (Triricum aestivum L.) under saline conditions. Pure and Applied Biology (PAB), 13(1), pp.93-100.

Sharma, A., Kohli, S.K., Khanna, K., Ramakrishnan, M., Kumar, V., Bhardwaj, R., Brestic, M., Skalicky, M., Landi, M. and Zheng, B., 2023. Salicylic acid: A phenolic molecule with multiple roles in salt-stressed plants. Journal of Plant Growth Regulation, pp.1-25.

Shaukat, K., Zahra, N., Hafeez, M.B., Naseer, R., Batool, A., Batool, H., Raza, A. and Wahid, A., 2022. Role of salicylic acid–induced abiotic stress tolerance and underlying mechanisms in plants. In Emerging plant growth regulators in agriculture (pp. 73-98). Academic Press.

Silva, A.A.R.D., Lima, G.S.D., Azevedo, C.A.V.D., Veloso, L.L.D.S.A. and Gheyi, H.R., 2020. Salicylic acid as an attenuator of salt stress in soursop. Revista Caatinga, 33, pp.1092-1101.

Singh, A., Rajput, V.D., Sharma, R., Ghazaryan, K. and Minkina, T., 2023. Salinity stress and nanoparticles: Insights into antioxidative enzymatic resistance, signaling, and defense mechanisms. Environmental Research, p.116585.

Singh, P., Kumar, V., Sharma, J., Saini, S., Sharma, P., Kumar, S., Sinhmar, Y., Kumar, D. and Sharma, A., 2022. Silicon supplementation alleviates the salinity stress in wheat plants by enhancing the plant water status, photosynthetic pigments, proline content and antioxidant enzyme activities. Plants, 11(19), p.2525.

Song, X., Zhou, G., Ma, B.L., Wu, W., Ahmad, I., Zhu, G., Yan, W. and Jiao, X., 2019. Nitrogen application improved photosynthetic productivity, chlorophyll fluorescence, yield and yield components of two oat genotypes under saline conditions. Agronomy, 9(3), p.115.

Soni, P.G., Basak, N., Rai, A.K., Sundha, P., Chandra, P. and Yadav, R.K., 2023. Occurrence of salinity and drought stresses: status, impact, and management. In Salinity and Drought Tolerance in Plants: Physiological Perspectives (pp. 1-28). Singapore: Springer Nature Singapore.

Sóti, A., Ounoki, R., Kósa, A., Mysliwa-Kurdziel, B., Sárvári, É. and Solymosi, K., 2023. Ionic, not the osmotic component, is responsible for the salinity-induced inhibition of greening in etiolated wheat (Triticum aestivum L. cv. Mv Béres) leaves: a comparative study. Planta, 258(5), pp.1-18.

Suhaib, M., Ahmad, I., Munir, M., Iqbal, M.B., Abuzar, M.K. and Ali, S., 2018. Salicylic acid induced physiological and ionic efficiency in wheat under salt stress. Pakistan Journal of Agricultural Research, 31(1), pp.79-85.

Tabur, S., Bayraktar, N.B.K. and Özmen, S., 2022. L-Ascorbic acid modulates the cytotoxic and genotoxic effects of salinity in barley meristem cells by regulating mitotic activity and chromosomal aberrations. Caryologia, 75(3), pp.19-29.

Tabur, S., Avci, Z.D. and Özmen, S., 2021. Exogenous salicylic acid application against mitodepressive and clastogenic effects induced by salt stress in barley apical meristems. Biologia, 76, pp.341-350.

Tammam, A.A., Rabei Abdel Moez Shehata, M., Pessarakli, M. and El-Aggan, W.H., 2023. Vermicompost and its role in alleviation of salt stress in plants–I. Impact of vermicompost on growth and nutrient uptake of salt-stressed plants. Journal of Plant Nutrition, 46(7), pp.1446-1457.

Thampi, M., Dhanraj, N.D., Prasad, A., Ganga, G. and Jisha, M.S., 2023. Phosphorus Solubilizing Microbes (PSM): Biological tool to combat salinity stress in crops. Symbiosis, pp.1-18.

Thumm, M., Egner, R., Koch, B., Schlumpberger, M., Straub, M., Veenhuis, M. and Wolf, D.H., 1994. Isolation of autophagocytosis mutants of Saccharomyces cerevisiae. FEBS letters, 349(2), pp.275-280.

Tsukada, M. and Ohsumi, Y., 1993. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS letters, 333(1-2), pp.169-174.

Turkyilmaz, B., 2012. Effects of salicylic and gibberellic acids on wheat (Triticum aestivum L.) under salinity stress. Bangladesh Journal of Botany, 41(1), pp.29-34.

Turan, M., Katkat, V. and Taban, S., 2007. Variations in proline, chlorophyll and mineral elements contents of wheat plants grown under salinity stress. Journal of Agronomy, 6(1).

Trușcă, M., Gâdea, Ș., Vidican, R., Stoian, V., Vâtcă, A., Balint, C., Stoian, V.A., Horvat, M. and Vâtcă, S., 2023. Exploring the Research Challenges and Perspectives in Ecophysiology of Plants Affected by Salinity Stress. Agriculture, 13(3), p.734.

Ullah, I., Toor, M.D., Basit, A., Mohamed, H.I., Gamal, M., Tanveer, N.A. and Shah, S.T., 2023. Nanotechnology: an Integrated Approach Towards Agriculture Production and Environmental Stress Tolerance in Plants. Water, Air, & Soil Pollution, 234(11), p.666.

Virág, E., Kiniczky, M., Kutasy, B., Nagy, Á., Pallos, J.P., Laczkó, L., Freytag, C. and Hegedűs, G., 2023. Supplementation of the Plant Conditioner ELICE Vakcina® Product with β-Aminobutyric Acid and Salicylic Acid May Lead to Trans-Priming Signaling in Barley (Hordeum vulgare). Plants, 12(12), p.2308.

Wang, L., Qin, L., Sun, X., Zhao, S., Yu, L., Chen, S. and Wang, M., 2023. Salt stress-induced changes in soil metabolites promote cadmium transport into wheat tissues. Journal of Environmental Sciences, 127, pp.577-588.

Xie, Z. and Klionsky, D.J., 2007. Autophagosome formation: core machinery and adaptations. Nature cell biology, 9(10), pp.1102-1109.

Yan, S., Chong, P. and Zhao, M., 2022. Effect of salt stress on the photosynthetic characteristics and endogenous hormones, and: A comprehensive evaluation of salt tolerance in Reaumuria soongorica seedlings. Plant Signaling & Behavior, 17(1), p.2031782.

Youssef, S.M., López-Orenes, A., Ferrer, M.A. and Calderón, A.A., 2023. Foliar Application of Salicylic Acid Enhances the Endogenous Antioxidant and Hormone Systems and Attenuates the Adverse Effects of Salt Stress on Growth and Yield of French Bean Plants. Horticulturae, 9(1), p.75.

Zarbakhsh, S. and Shahsavar, A.R., 2023. Exogenous γ-aminobutyric acid improves the photosynthesis efficiency, soluble sugar contents, and mineral nutrients in pomegranate plants exposed to drought, salinity, and drought-salinity stresses. BMC Plant Biology, 23(1), p.543.

Downloads

Published

2025-03-25

How to Cite

Fairoj, S. A., Ghosh, U. K., Islam, M. M., Jahan, K., Anamika, Siddiqui, S., Alshaharani, M. O., Siddiqua, A., & Yassin, H. M. (2025). Amelioration strategy of saline stress in wheat with salicylic acid: a review. Caryologia, 77(3), 11–25. https://doi.org/10.36253/caryologia-2812

Issue

Section

Articles