Methomyl has clastogenic and aneugenic effects and alters the mitotic kinetics in Pisum sativum L.

Authors

  • Sazada Siddiqui Department of Biology, College of Science, King Khalid University, Abha 61413
  • Sulaiman A. Alrumman Department of Biology, College of Science, King Khalid University, Abha 61413

DOI:

https://doi.org/10.36253/caryologia-1895

Keywords:

clastogenic, aneugenic, C- mitosis Pisum sativum L., methomyl, mitotic index

Abstract

Methomyl is a carbamate pesticide that is frequently applied to crops all over the world. This research aims to evaluate the Pisum sativum L mitotic process and potential genotoxicity. The Cell Proliferation Kinetics (CPK) frequencies demonstrated changes in kinetics of mitotic process, and study of Mitotic Index (MI) demonstrated that methomyl had cytotoxic properties. In fact, the telophases ratio dropped at 0.1% to 0.5% methomyl treatment, while there was an increase in prophases, metaphases, and anaphases from 0.1% to 0.5% in a dose dependent manner. In terms of genotoxicity, methomyl cause an increase in the frequency of clastogenic and aneugenic chromosomal abnormalities at metaphase-anaphase at 0.1% to 0.5%. The effects on the mitotic spindle were further confirmed by an increase in the frequencies of c-mitosis from 0.1 to 0.5% methomyl treatment. The outcome of the current analysis indicates that regularly used insecticides methomyl has a considerable cytotoxic effect on mitotic cells of Pisum sativum L.

Downloads

Download data is not yet available.

References

Acar A. 2021. In vivo toxicological assessment of diquat dibromide: cytotoxic, genotoxic, and biochemical approach. Environ Sci and Pollut Res. 28(34): 47550-61.

Afaf N, Abdel R, Amany AR, Mohamed ND, Mohamed FM, Farag LS, Alqahtani MA, Nassan Saed AAl Thobaiti, Nesma IEl-Naseery. 2022. Appraisal of sub-chronic exposure to lambada-cyhalothrin and/or methomyl on the behavior and hepato-renal functioning in Oreochromis niloticus: Supportive role of taurine-supplemented feed. Aquat. Toxicol. 250:106257.

Asif R, Yasmin R, Mustafa M, Ambreen A, Mazhar M, Rehman A, Umbreen S, Ahmad M. 2022. Phytohormones as plant growth regulators and safe protectors against biotic and abiotic stress. Plant Hormones: Recent Advances, New Perspectives and Applications. p.115.

Ay?e YK, Eri? K. 2017. Evaluation of the genotoxicity of commercial formulations of ethephon and ethephon+cyclanilide on Allium cepa L. root meristematic cells, Caryologia, 70:(3) 229-237. DOI: 10.1080/00087114.2017.1329960

Bandopadhyay A, Roy T, Alam S, Majumdar S, Das N. 2022. Influence of pesticide-tolerant soil bacteria for disease control caused by Macrophomina phaseolina (Tassi.) Goid and plant growth promotion in Vigna unguiculata (L.) Walp. Environ. Dev. Sustain. pp.1-21.

Chandra R, Sharpanabharathi N, Prusty BAK. et al. 2021. Organochlorine pesticide residues in plants and their possible ecotoxicological and agri food impacts. Sci Rep. 11:17841. https://doi.org/10.1038/s41598-021-97286-4

Castellanos NL, Smagghe G, Taning CNT, Oliveira EE and Christiaens O. 2022. Risk assessment of RNAi-based pesticides to non-target organisms: Evaluating the effects of sequence similarity in the parasitoid wasp Telenomus podisi. Sci. Total Environ. 832:154746.

Dewitte A, Eeckhaut T, Van Huylenbroeck J, Van Bockstaele E. 2010. Meiotic aberrations during 2n pollen formation in Begonia. Heredity. 104:215–23.

Eddleston M, Dawson A, Karalliedde L, Dissanayake W, Hittarage A, Azher S, Buckley NA. (2004). Early management after selfpoisoning with an organophosphorus or carbamate pesticide—A treatment protocol for junior doctors. Crit Care. 8(6): R391–R397.

El-Ghamery AA, El-Nahas AI, Mansour MM. 2000. The action of atrazine herbicide as an inhibitor of cell division on chromosomes and nucleic acids content in root meristems of Allium cepa and Vicia faba. Cytologia. 65(3):277–287.

El-Houseiny, Algharib W, Mohamed SA, Metwally EA, Mahmoud MM, Alghamdi YK, Soliman YS, Abd-Elhakim MM, El-Murr AE. 2022. Dietary parsley seed mitigates methomyl-induced impaired growth performance, hemato-immune suppression, oxidative stress, hepato-renal damage, and pseudomonas aeruginosa susceptibility in Oreochromis niloticus. Antioxidants. 11(6);1185.

Evans HJ. 1962. Chromosome aberrations induced by ionizing radiations. Int Rev Cytol. 13:221– 232

Frenzilli G, Nidro M, Lyons BP. 2009. The comet assay for the evaluation of genotoxic impact in aquatic environments. Mutat Res Rev Mutat Res. 681:80–92.

Grant WF. 1978. Chromosome aberrations in plants as a monitoring system. Environ Health Perspect. 27:37–43.

Hafez ZM, Sobieha AK, Asran AA, Emam HM. 2022. Toxicity of Lambada Cyhalothrin, and Methomyl on terrestrial snails, Eobania Vermiculata, and Helicella Vestalis, under laboratory conditions. Res J Environ Sci. 51(4):93-108.

Haliem AS. 1990. Cytological effects of the herbicide sencorer on mitosis of A.cepa. Egypt J Bot. 33:93–104.

Honles J, Clisson C, Monge C, Vásquez-Ocmin P, Cerapio JP, Palamy S, Casavilca-Zambrano S, Herrera J, Pineau P, Deharo E, Peynet V. 2022. Exposure assessment of 170 pesticide ingredients and derivative metabolites in people from the central andes of Peru. Sci. Rep. 12(1):1-15. https://doi.org/10.1186/cc2953

Iturburu FG, Simoniello MF, Medici S, Panzeri AM, Menone ML. 2018. Imidacloprid causes DNA damage in fish: clastogenesis as a mechanism of genotoxicity. Bull Environ Contam Toxicol. 100 (6):760–764.

Jablonski CA, Pereira TCB, Teodoro LDS, Altenhofen S, Rübensam G, Bonan CD, Bogo MR. 2022. Acute toxicity of methomyl commercial formulation induces morphological and behavioral changes in larval zebrafish (Danio rerio). Neurotoxicol Teratol. 89:107058.

Jing X, Liu T, Fateh B, Chen J, Zheng Y, Xu G. 2022a. Effect of methomyl on water quality, growth performance and antioxidant system in liver of GIFT (Oreochromis niloticus) in the presence of peppermint (Mentha haplocalyx Briq.) as a floating bed. Sci Prog. 105(3): p.00368504221124047

Jing X, Zheng Y, Mulbah JP, Chen J, Xu G. 2022b. Effect of methomyl on growth, antioxidant system of gift (oreochromis niloticus), and residue in the presence of water spinach (Ipomoea aquatica Forsk). J Environ Anal Chem.7434426. doi: 10.1155/2022/7434426.

Kaufman BP, McDonald MR, Bernstein MH. 1955. Cytochemical studies of changes induced in cellular materials by ionizing radiations. Ann N Y Acad Sci. 59:553–566.

Kaur P, Grover IS. 1985. Cytological effects of some organophosphorus pesticides. II. Meiotic effects. Cytologia. 50:199–211.

Laicher D, Benkendorff K, White S, Conrad S, Woodrow, RL, Butcherine P, Sanders CJ. 2022. Pesticide occurrence in an agriculturally intensive and ecologically important coastal aquatic system in Australia. Mar. Pollut. Bull.180:113675.

Li Z, Jennings A. 2018. Global variations in pesticide regulations and health risk assessment of maximum concentration levels in drinking water. J Environ Manage. 212:384–394. https:// doi.org/10.1016/j.jenvman.2017.12.083

Liman R, Aky?l D, Eren Y, Konuk M. 2010. Testing of the mutagenicity and genotoxicity of metolcarb by using both Ames/Salmonella and Allium test. Chemosphere. 80(9):1056–1061.

Lukaszewicz G, Iturburu FG, Garanzini DS, Menone ML, Pflugmacher S. 2019. Imidacloprid modifies the mitotic kinetics and causes both aneugenic and clastogenic effects in the macrophyte Bidens laevis L. Heliyon. 5(7):e02118. doi: 10.1016/j.heliyon.2019.e02118.

Shabbir MD, Mukesh S, Swati M, Samar KS. 2021. Organophosphate pesticide (Chlorpyrifos): Environmental menace; study reveals genotoxicity on plant and animal cells. Environmental Challenges. 5:100313.

Mojiri A, Zhou JL, Robinson B, Ohashi A, Ozaki N, Kindaichi T, Farraji H, Vakili M. 2020. Pesticides in aquatic environments and their removal by adsorption methods. Chemosphere. 253: 126646.

Nie J, Sun Y, Zhou Y, Kuma M, Usman M, Li J, Tsang DCW. (2020). Bioremediation of water containing pesticides by microalgae: Mechanisms, methods, and prospects for future research. Sci. Total Environ. 707:136080. https://doi.org/10.1016/j. scitotenv.2019.136080

Odeigah PGC, Nurudeen O, Amund OO. 1997. Genotoxicity of oil field wastewater in Nigeria. Hereditas. 126(2):161–167.

Omeiri M, Khnayzer R, Yusef H, Tokajian S, Salloum T, Mokh S. 2022. Bacillus spp. isolated from soil in Lebanon can simultaneously degrade methomyl in contaminated soils and enhance plant growth. Biocatal. Agric. Biotechnol. 39:102280.

Ozkul M, Ozel CA, Yuzba??oglu D, Unal F. 2016. Does 2,4-dichlorophenoxyacetic acid (2,4-D) induce genotoxic effects in tissue cultured Allium roots? Cytotechnology. 68(6):2395–2405

Pesavento PA, Agnew D, Keel MK, Woolard KD. 2018. Cancer in wildlife: patterns of emergence. Nat Rev Cancer. 18: 646–661.

Ping KY, Darah I, Yusuf UK, Yeng C, Sasidharan S. 2012. Genotoxicity of Euphorbia hirta: an Allium cepa assay. Molecules.17(7):7782–7791.

Prajitha V, Thoppil JE. 2016. Genotoxic and antigenotoxic potential of aqueous leaf extracts of Amaranthus spinosus Linn. Using Allium cepa assay. S Afr J Bot. 102:18–25.

Priya JS, Purushothaman P, Hannah C, Matthew S, Thomas S. 2014. Genotoxic effect of ethephon on the root meristems of Allium cepa L. Commun Plant Sci. 4:19–22.

Qian XW. 1998. Improvement on experiment method of micronucleus in root tip cell of Vicia faba. J Wenzhou Norm Coll. 19: 64–65.

Ramadan MF, Abdel-Hamid M, Altorgoman MM, AlGaramah HA, Alawi MA, Shati, AA, Awwad NS. 2020. Evaluation of pesticide residues in vegetables from the Asir Region, Saudi Arabia. Molecules. 25(1):205. https://doi.org/10.3390/molecules 25010205

Rank J. 2003. The method of Allium anaphase-telophase chromosome aberration assay. Ekologija (Vilnius). 1: 38–42.

Rosculete CA, Bonciu E, Rosculete E, Olaru LA. 2019. Article determination of the environmental pollution potential of some herbicides by the assessment of cytotoxic and genotoxic effects on Allium cepa. Int J Environ Res Public Health.16: 75

Shimoi G, Tomita M, Kataoka M, Kameyama Y. 2019. Destabilization of spindle assembly checkpoint causes aneuploidy during meiosis II in murine post-ovulatory aged oocytes. J Reprod Dev. 65(1):57-66. doi: 10.1262/jrd.2018-056.

Siddiqui S, Al-Rumman S. 2022a. Methomyl, imbraclaobrid and clethodim induced cytomixis and syncytes behaviors in PMCs of Pisum sativum L: Causes and outcomes. Saudi J Biol Sci. 29(9):103390. doi: 10.1016/j.sjbs.2022.103390.

Siddiqui S, Al-Rumman S. 2022b. Exposure of Pisum sativum L. Seeds to Methomyl and Imidacloprid Cause Genotoxic Effects in Pollen-Mother Cells. Biology. 11: 1549. https://doi.org/10.3390/ biology11111549

Siddiqui S, Meghvansi MK, Hasan Z. 2007. Cytogenetics changes induced by sodium azide on Trigonella foenum-greacum L. seeds. S Afr J Bot. 73: 632–635

Siddiqui S, Meghvansi MK, Khan SS. 2012. Glyphosate, alachor and maleic hydrazide have genotoxic effect on Trigonella foenum-graecum L. Bull Environ Contam Toxicol. 88(5): 659-65. doi: 10.1007/s00128-012-0570-6.

Siddiqui S, Al-Rumman S. 2020a. Cytological changes induced by clethodim in Pisum sativum plant. Bangladesh J. Bot. 49(2):367–374.

Siddiqui S, Al-Rumman S. 2020b. Clethodim induced pollen sterility and meiotic abnormalities in vegetable crop Pisum sativum L. Caryologia. 73(1):37–44.

Singh D, Sahu TL, Netam N, Nishad D, Banjare B. 2022. Effect of plant growth regulators on growth and flowering of China aster (Callistephus chinensis L.) cv. Phule Ganesh pink. J. Pharm. Innov. 11 (2): 297– 949.

Yu R, Liu Q, Liu J, Wang Q, Wang Y. 2016. Concentrations of organophosphorus pesticides in fresh vegetables and related human health risk assessment in Changchun, Northeast China. Food Control. 60: 353–360. https://doi.org/10.1016/j.foodcont.2015.08.013

Zeyad MT, Kumarb M, Malika A. 2019. Mutagenicity, genotoxicity and oxidative stress induced by pesticide industry wastewater using bacterial and plant bioassays. Biotech Reports. 24: e00389

Downloads

Published

2023-02-12

How to Cite

Siddiqui, S., & Alrumman, S. A. (2023). Methomyl has clastogenic and aneugenic effects and alters the mitotic kinetics in Pisum sativum L. Caryologia, 75(3), 91–99. https://doi.org/10.36253/caryologia-1895

Issue

Section

Articles