Published 2025-06-19
Keywords
- Desalination,
- Hot-bubble pilot plant,
- Helium,
- Combustion gas,
- Dry Air
How to Cite
Copyright (c) 2025 Thi Thuy Nguyen, Adrian Garrido Sanchis , Richard M. Pashley

This work is licensed under a Creative Commons Attribution 4.0 International License.
Abstract
The bubble-column evaporator (BCE) offers a simple, energy-efficient and affordable seawater desalination process based on sub-boiling evaporation by enhancing the efficiency of heat and mass transfer through a constant flow of dense, heated bubbles rising in a solution-filled column. A large-scale hot-bubble pilot plant (HBPP), based on the BCE, was built to implement the thermal desalination process. Several different inlet gases, dry air, helium and combustion exhaust gas, were used in the HBPP to produce purified water from synthetic seawater. The efficiency was improved by using hot combustion gas instead of dry air or helium at the same inlet temperature, thereby reducing the energy consumption.
References
- (1) Khawaji, A. D.; Kutubkhanah, I. K.; Wie, J.-M. Advances in Seawater Desalination Technologies. Desalination 2008, 221 (1–3), 47–69. https://doi.org/10.1016/j.desal.2007.01.067.
- (2) Mezher, T.; Fath, H.; Abbas, Z.; Khaled, A. Techno-Economic Assessment and Environmental Impacts of Desalination Technologies. Desalination 2011, 266 (1–3), 263–273. https://doi.org/10.1016/j.desal.2010.08.035.
- (3) Shahid, M. A Study of the Bubble Column Evaporator Method for Improved Sterilization. Journal of Water Process Engineering 2015, 8, e1–e6. https://doi.org/10.1016/J.JWPE.2014.10.009.
- (4) Shahid, M.; Fan, C.; Pashley, R. M. Insight into the Bubble Column Evaporator and Its Applications. Int Rev Phys Chem 2016, 35 (1), 143–185. https://doi.org/10.1080/0144235X.2016.1147144.
- (5) Taseidifar, M.; Shahid, M.; Pashley, R. M. A Study of the Bubble Column Evaporator Method for Improved Thermal Desalination. Desalination 2018, 432, 97–103. https://doi.org/10.1016/j.desal.2018.01.003.
- (6) Shahid, M.; Xue, X.; Fan, C.; Ninham, B. W.; Pashley, R. M. Study of a Novel Method for the Thermolysis of Solutes in Aqueous Solution Using a Low Temperature Bubble Column Evaporator. J Phys Chem B 2015, 119 (25), 8072–8079. https://doi.org/10.1021/acs.jpcb.5b02808.
- (7) Francis, M. J.; Pashley, R. M. Thermal Desalination Using a Non-Boiling Bubble Column. Desalination Water Treat 2009, 12 (1–3), 155–161. https://doi.org/10.5004/dwt.2009.917.
- (8) Shahid, M.; Taseidifar, M.; Pashley, R. M. A Study of the Bubble Column Evaporator Method for Improved Ammonium Bicarbonate Decomposition in Aqueous Solutions: Desalination and Other Techniques. Substantia 2021, 49–55. https://doi.org/10.36253/Substantia-833.
- (9) Sanchis, A. G.; Shahid, M.; Pashley, R. M. Improved Virus Inactivation Using a Hot Bubble Column Evaporator (HBCE). Colloids Surf B Biointerfaces 2018, 165, 293–302. https://doi.org/10.1016/j.colsurfb.2018.02.030.
- (10) Craig, V. S. J.; Ninham, B. W.; Pashley, R. M. The Effect of Electrolytes on Bubble Coalescence in Water. J Phys Chem 1993, 97 (39), 10192–10197. https://doi.org/10.1021/j100141a047.
- (11) Leifer, I.; Patro, R. K.; Bowyer, P. A Study on the Temperature Variation of Rise Velocity for Large Clean Bubbles. J Atmos Ocean Technol 2000, 17 (10), 1392–1402. https://doi.org/https://doi.org/10.1175/1520-0426(2000)017<1392:ASOTTV>2.0.CO;2.
- (12) Ninham, B. W.; Pashley, R. M.; Nostro, P. Lo. Surface Forces: Changing Concepts and Complexity with Dissolved Gas, Bubbles, Salt and Heat. Curr Opin Colloid Interface Sci 2017, 27, 25–32. https://doi.org/10.1016/J.COCIS.2016.09.003.
- (13) Pashley, R. M.; Francis, M. J.; Rzechowicz, M. Unusual Properties of Water: Effects on Desalination Processes. Water (Basel) 2008, 35 (8), 67–71.
- (14) Wei, R.; Pashley, R. M. An Improved Evaporation Process with Helium Inlet in a Bubble Column Evaporator for Seawater Desalination. Desalination 2020, 479, 114329. https://doi.org/10.1016/j.desal.2020.114329.
- (15) Ninham, B. W.; Shahid, M.; Pashley, R. M. A Review and Update of Bubble Column Evaporator Processes. Substantia 2021, 4 (2), 19–32. https://doi.org/10.36253/Substantia-823.
- (16) Wei, R.; Sanchis, A. G. A New Commercial Prototype of a Bubble Column Evaporator (BCE) for High-Quality Water Production in Livestock (Piggery) Farms. J Environ Chem Eng 2023, 11 (2), 109463. https://doi.org/10.1016/j.jece.2023.109463.
- (17) Shahid, M.; Pashley, R. M. A Study of the Bubble Column Evaporator Method for Thermal Desalination. Desalination 2014, 351, 236–242. https://doi.org/10.1016/j.desal.2014.07.014.
- (18) Fan, C.; Shahid, M.; Pashley, R. M. The Energy Balance within a Bubble Column Evaporator, Heat and Mass Transfer. Heat and Mass Transfer 2018, 54 (5), 1313–1321. https://doi.org/10.1007/s00231-017-2234-x.
- (19) Wei, R.; Sanchis, A. G. The Improved Evaporation Efficiency of a Hot-Bubble Pilot Plant (HBPP) Caused by Combustion Gas for Water Treatment. Water Resour Ind 2021, 25, 100151. https://doi.org/10.1016/j.wri.2021.100151.
- (20) Garrido Sanchis, A.; Jin, L. Evaluation of the New Energy-Efficient Hot Bubble Pilot Plant (HBPP) for Water Sterilization from the Livestock Farming Industry. Water Resour Ind 2020, 24, 100135. https://doi.org/10.1016/j.wri.2020.100135.
- (21) Wei, R. A Study of the Improved Evaporation Efficiency of a Bubble Column Evaporator for Water Treatment. Thesis, UNSW Canberra, Canberra, 2021. https://doi.org/https://doi.org/10.26190/unsworks/24050.
- (22) Bakan, H. I. A Novel Water Leaching and Sintering Process for Manufacturing Highly Porous Stainless Steel. Scr Mater 2006, 55 (2), 203–206. https://doi.org/10.1016/J.SCRIPTAMAT.2006.03.039.
- (23) Fan, C.; Shahid, M.; Pashley, R. M. Studies on Bubble Column Evaporation in Various Salt Solutions. J Solution Chem 2014, 43 (8), 1297–1312. https://doi.org/10.1007/s10953-014-0206-z.
- (24) Francis, M. J.; Pashley, R. M. Application of a Bubble Column for Evaporative Cooling and a Simple Procedure for Determining the Latent Heat of Vaporization of Aqueous Salt Solutions. J Phys Chem B 2009, 113 (27), 9311–9315. https://doi.org/10.1021/jp901801k.
- (25) Prakash Narayan, G.; McGovern, R. K.; Lienhard V, J. H.; Zubair, S. M. Helium as a Carrier Gas in Humidification Dehumidification Desalination Systems. ASME 2011 International Mechanical Engineering Congress and Exposition, IMECE 2011 2012, 1, 437–444. https://doi.org/10.1115/IMECE2011-62875.
- (26) Ghazi, Z. M.; Rizvi, S. W. F.; Shahid, W. M.; Abdulhameed, A. M.; Saleem, H.; Zaidi, S. J. An Overview of Water Desalination Systems Integrated with Renewable Energy Sources. Desalination 2022, 542, 116063. https://doi.org/10.1016/j.desal.2022.116063.