Comparative chromosome mapping of repetitive DNA in four minnow fishes (Cyprinidae, Cypriniformes)

Authors

  • Surachest Aiumsumang Biology Program, Faculty of Science and Technology, Phetchabun Rajabhat University, Phetchabun 67000
  • Patcharaporn Chaiyasan Program of Biology, Faculty of Science, Khon Kaen University, Muang, Khon Kaen 40002
  • Kan Khoomsab Education Science Program, Faculty of Science and Technology, Phetchabun Rajabhat University, Phetchabun 67000
  • Weerayuth Supiwong Applied Science Program, Faculty of Interdisciplinary Studies, Khon Kaen University, Nong Khai Campus, Muang, Nong Khai 43000
  • Alongklod Tanomtong Program of Biology, Faculty of Science, Khon Kaen University, Muang, Khon Kaen 40002
  • Sumalee Phimphan Biology Program, Faculty of Science and Technology, Phetchabun Rajabhat University, Phetchabun 67000

DOI:

https://doi.org/10.36253/caryologia-1523

Keywords:

Cyprinidae, Danioninae, FISH, microsatellite

Abstract

The present study focused on the repetitive DNA of the chromosome in four minnow fishes from the genera Danio Hamilton, 1822, Devario Heckel, 1843 and Rasbora Bleeker, 1859. Chromosomes were analysed using fluorescence in situ hybridization (FISH) with microsatellite probes including (CA)15, (CAC)10, (CGG)10, (GC)15 and (TA)15 staining. All species retained the diploid chromosome number 2n = 50 in male and female. The microsatellite sequences were mapped in the chromosomes of Danio albolineatus (Blyth, 1860), Devario regina (Fowler, 1934), Rasbora aurotaenia Tirant, 1885 and R. paviana Tirant, 1885. In most cases, the microsatellite was dispersed in the chromosome with conspicuous markings in the telomeric region and the whole genome, which suggests that sequences contribute to chromosome structure and may have played a role in the relationship of this fish group. The comparative genome mapping data presented here provide novel information on the structure and organisation of the repetitive DNA region of the minnow’s genome and contribute to a better understanding of the genomes of these minnows.

Downloads

Download data is not yet available.

References

Aiumsumang S, Phimphan S, Suwannapoom C, Chaiyasan P, Supiwong W, Tanomtong A. 2021. A comparative chromosome study on five Minnow fishes (Cyprinidae, Cypriniformes) in Thailand. Caryologia 74(1): 87–94. https://doi.org/10.36253/caryologia-1017

Amores A, Postlethwait JH. 1999. Banded chromosomes and the zebrafish karyotype. Methods in Cell Biology 60: 323–338. https://doi.org/ 10.1016/s0091-679x(08)61908-1

Arai R. 2011. Fish Karyotypes: A Check List. Springer Japan, Tokyo. https://doi.org/10.1007/978-4-431-53877-6

Blazer VS. 2002. Histopathological assessment of gonadal tissue in wild fishes. Physiology Biochemistry 26: 85–101. https://doi.org/10.1023/A:1023332216713

Brittan MR. 1954. A revision of the Indo-Malayan fresh-water fish genus Rasbora. Institute of Science and Technology. Manila Monogr 3: 1–224.

Brittan MR. 1971. Rasbora: A Revision of the Indo-Malayan Fresh-Water Fish Genus Rasbora. T.F.H. Publications, Neptune City.

Brittan MR. 1998. Rasboras: Keeping and Breeding Them in Captivity. T.F.H. Publications, Neptune City.

Cioffi MB, Bertollo LAC. 2012. Distribution and evolution of repetitive DNAs in fish. In: Garrido-Ramos, M. A. (ed.) Repetitive DNA, Vol. 7. Karger, Basel, pp. 197–221. https://doi.org/10.1159/000337952

Cioffi MB, Bertollo LAC, Villa MA, Oliveira EA, Tanomtong A, Yano CF, Supiwong W, Chaveerach A. 2015. Genomic organization of repetitive DNA elements and its implications for the chromosomal evolution of channid fishes (Actinopterygii, Perciformes). PLoS One. 10(6): e0130199. https://doi.org/10.1371/journal.pone.0130199

Cioffi MB, Martins C, Bertollo LAC. 2010. Chromosome spreading of associated transposable elements and ribosomal DNA in the fish Erythrinus erythrinus. Implications for genome change and karyoevolution in fish. BMC Evolution. Biology 10(1): 271–279. https://doi.org/10.1186/1471-2148-10-271.

Daga RR, Thode G, Amores A. 1996. Chromosome complement, C banding, Ag-NOR and replication banding in the zebrafish Danio rerio. Chromosome Research 4(1): 29–32. https://doi.org/10.1007/BF02254941

Donsakul T, Rangsiruji A, Magtoon W. 2009. Karyotypes of five cyprinid fishes (Cyprinidae, Danioninae-Danionini): Rasbora agilis, R. dorsiocellata, R. rubrodorsalis, Boraras maculate and B. urophthalmoides from Thailand. In Proceedings of the 47th Kasetsart University Annual Conference, Kasetsart. Bangkok, Thailand. 320–327.

Donsakul T, Magtoon W, Rangsiruji W. 2005. Karyotype of five species of fish (Pla siew) in subfamily Rasboranae. 31st Congress on Science and Technology of Thailand at Suranaree University of Technology. Nakhon Ratchasima Province Thailand. [In Thai]

Donsakul T, Magtoon W. 2002. Karyotype of Rasbora Caudimaculata, R. myersi, R. retrodorsalis, R. paviei from Thailand. Academic conference seminar for research papers of Srinakharinwirot University. Bangkok. 1–7. [In Thai]

Donsakul T, Magtoon W. 1995. Karyotypes of four Cyprinid fishes, Osteochilus melanopleura, Puntioplites proctozysron, Paralaubuca riveroi and Rasbora sumatrana from Thailand. In: 33rd Conference of Kasetsart University. Fisheries. 128–138. [In Thai]

Endo A, Ingalls TH. 1968. Chromosomes of the Zebra Fish: a model for cytogenetic, embryologic, and ecologic study. Journal Heredity 59: 382–384. https://doi.org/10.1093/oxfordjournals.jhered.a107755

Eschmeyer WN, Fricke R (Eds.) 2009. Catalog of Fishes, electronic version (updated 13 March 2009). Eschmeyer WN (Ed.) 1998. Catalog of Fishes. California Academy of Sciences, San Francisco. Available from: <http://research.calacademy.org/research/ichthyology/catalog/fishcatmain.asp>.

Filcek KB, Gilmore SA, Scribner KT, Jones ML. 2005. Discriminating lamprey species using multilocus microsatellite genotypes. North American Journal of Fisheries Management 25: 502–509. https://doi.org/10.1577/M03-206.1

Fontana F, Chiarelli B, Rossi AC. 1970. II cariotipo di alcune specie di Cyprynidae, Centrarchidae, Characidae studiate mediante colture ‘in vitro’. Caryologia 23: 549–564. https://doi.org/10.1080/00087114.1970.10796394

Frame L, Dickerson RL. 2006. Fish and wildlife as sentinels of environment contamination. In Endocrine disruption: biological bases for health effects in wildlife and humans. Oxford University Press, New York, U.S.A.

Froese R, Pauly D. 2012. Fish Base. World Wide Web electronic publication, www.fishbase.org, version 06/2019.

Getlekha N, Molina WF, Cioffi MB, Yano CF, Maneechot N, Bertollo LAC, Supiwong W, Tanomtong A. 2016. Repetitive DNAs highlight the role of chromosomal fusions in the karyotype evolution of Dascyllus species (Pomacentridae, Perciformes). Genetica 144(2): 203–211. https://doi.org/10.1007/s10709-016-9890-5

Gornung E, Gabrielli I, Cataudella S, Sola L. 1997. CMA3- banding pattern and fluorescence in situ hybridization with 18S rRNA genes in zebrafish chromosomes. Chromosome Research 5: 40–46. https://doi.org/10.1023/A:1018441402370

Goldstein DB, Pollock DD. 1997. Lauching microsatellites. Journal of Heredity 88: 335–342. doi: 10.1093/oxfordjournals.jhered.a023114

Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J. 2005. Repbase Update, a database of eukaryotic repetitive elements. Cytogenetics Genome. Research 110: 462–467. https://doi.org/10.1159/000084979

Kaewtip J, Wongwut A, Iamchuen N, Pinmongkholgul S, Seetapan K. 2021. The Standard Karyotypes and Idiograms of Rose Danio (Danio roseus) and Laos Danio (Devario laoensis). Burapa Science Journal 26(2): 783-789. [in Thai]

Khuda-Bukhsh AR. 1979. Karyology of two species of hillstream fishes, Barilius bendelisis and Rasbora daniconius (Fam. Cyprinidae). Current Science 48: 793–794.

Kubat Z, Hobza R, Vyskot B, Kejnovsky E. 2008. Microsatellite accumulation in the Y chromosome of Silene latifolia. Genome 51: 350–356. https://doi.org/10.1139/G08-024

Levan A, Fredga K, Sandberg AA. 1964. Nomenclature for centromeric position on chromosomes. Hereditas 52: 201–220. https://doi.org/10.1111/j.1601-5223.1964.tb01953.x

Liehr T. 2009. Fluorescence in situ Hybridization (FISH)-Application Guide. Springer,

Verlag, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70581-9

Manna GK, Khuda-Bukhsh AR. 1977. Karyomorphology of cyprinid fishes and cytological evaluation of the family. Nucleus 20: 119–127.

Maneechot N, Yano CF, Bertollo LAC, Getlekha N, Molina WF, Ditcharoen S, Tengjaroenkul B, Supiwong W, Tanomtong A, Cioffi MB. 2016. Genomic organization of repetitive DNAs highlights chromosomal evolution in the genus Clarias (Clariidae, Siluriformes). Molecular Cytogenetics 9(1): 4. https://doi.org/10.1186/s13039-016-0215-2

McCusker MR, Paterson IG, Bentzen P. 2008. Microsatellite markers discriminate three species of North Atlantic wolffishes (Anarhichas spp.). Journal of Fish Biology 72: 375–385. https://doi.org/10.1111/j.1095-8649.2007.01701.x

Moraes RLR, Bertollo LAC, Marinho MMF, Yano CF, Hatanaka T, Barby FF, Troy WP Cioffi MB. 2017. Evolutionary relationships and cytotaxonomy considerations in the genus Pyrrhulina (Characiformes, Lebiasinidae). Zebrafish 14(6): 536–546. https://doi.org/10.1089/zeb.2017.1465

Moraes RLR, Sember A, Bertollo LAC, de Oliveira EA, Ráb P, Hatanaka T, Marinho MMF, Liehr T, Al-Rikabi ABH, Feldberg E, Viana PF, Cioffi MB. 2019. Comparative cytogenetics and neo-Y formation in small-sized fish species of the genus Pyrrhulina (Characiformes, Lebiasinidae). Frontiers in Genetics 10: e678. https://doi.org/10.3389/fgene.2019.00678

Pijnacker LP, Ferwerda MA. 1995. Zebrafish chromosome banding. Genome 38: 1052–1055. https://doi.org/10.1139/g95-140

Pinkel D, Straume T, Gray J. 1986. Cytogenetic analysis using quantitative, high sensitivity, fluorescence hybridization. Proceedings of the National Academy of Sciences of the United States of America 83: 2934–2938. https://doi.org/10.1073/pnas.83.9.2934

Phillips RB, Reed KM. 2000. Localization of repetitive DNAs to zebrafish (Danio rerio) chromosomes by fluorescence in situ hybridization (FISH). Chromosome. Research 8: 27–35. https://doi.org/10.1023/A:1009271017998

Phimphan S, Chaiyasan P, Suwannapoom C, Reungsing M, Juntaree S, Tanomtong A, Supiwong W. 2020. Comparative karyotype study of three Cyprinids (Cyprinidae, Cyprininae) in Thailand by classical cytogenetic and FISH techniques. Comparative Cytogenetics 14(4): 597–612. https://doi.org/10.3897/CompCytogen.v14i4.54428

Post A. 1965. Vergleichende Untersuchungen der Chromosomenzahlen bei Susswasserteleosteern. Journal Zoological Systematics and Evolutionary Research 3: 47–93. https://doi.org/10.1111/j.1439-0469.1965.tb00426.x

Racey PA, Barratt EM, Burland TM, Deaville R, Gotelli D, Jones G, Piertney SB. 2007. Microsatellite DNA polymorphism confirms reproductive isolation and reveals differences in population genetic structure of cryptic pipistrelle bat species. Biological Journal of the Linnean Society 90: 539–550. https://doi.org/10.1111/j.1095-8312.2007.00746.x

Raskovic B, Poleksic V, Zivic I, Spasic M. 2010. Histology of carp (Cyprinus carpio, L.) gills and pond water quality in semiintensive production. Bulgarian Journal of Agricultural Science 16: 253–262.

Reddy PB, Rawat SS. 2013. Assessment of aquatic pollution using histopathology in fish.

International Journal of Environmental Science and Technology 2: 79–82.

Rishi KK (1976) Karyotypic studies on four species of fishes. Nucleus 19: 95–98.

Rüber L, Kottelat M, Tan HH, Ng PKL, Britz R. 2007. Evolution of miniaturization and the phylogenetic position of Paedocypris, comprising the world's smallest vertebrate. BMC Evolution Biology 7: 38. https://doi.org/10.1186/1471-2148-7-38

Saenjundaeng P, Cioffi MB, Oliveira EA, Tanomtong A, Supiwong W, Phimphan S, Collares-Pereira MJ, Sember A, Bertollo LAC, Liehr T, Yano CF, Hatanaka T, Ráb P. 2018. Chromosomes of Asian cyprinid fishes: cytogenetic analysis of two representatives of small paleotetraploid tribe Probarbini. Molecular Cytogenetics 11(1): 51. https://doi.org/10.1186/s13039-018-0399-8

Sassi FMC, Oliveira EAD, Bertollo LAC, Nirchio M, Hatanaka T, Marinho MMF, Moreira-Filho O, Aroutiounian R, Liehr T, Al-Rikabi ABH, Cioffi MB. 2019. Chromosomal evolution and evolutionary relationships of Lebiasina species (Characiformes, Lebiasinidae). International Journal of Molecular Sciences 20(12): 2944. https://doi.org/10.3390/ijms20122944.

Schreeb KH, Groth G, Sachsse W, Freundt KJ. 1993. The karyotype of the zebrafish. Journal of Experimental Animal Science 36: 27–31.

Seetapan K, Moeikum T. 2004. Karyotypes of ten Cyprinid fishes (Family Cyprinidae). Journal of Agricultural Research and Extension 22: 92–101. [in Thai]

Sharma KK, Sharma OP, Tripathi NK. 1998. Female heterogamety in Danio rerio (Cypriniformes: Cyprinidae). Proceedings of the National Academy of Sciences, India 68: 123–126.

Sola L, Gornung E. 2001. Classical and molecular cytogenetics of the zebrafish, Danio rerio (Cyprinidae, Cypriniformes): an overview. Genetica 111: 397–412. https://doi.org/10.1023/A:1013776323077

Spoz A, Boron A, Porycka K, Karolewska M, Ito D, Abe S, Kirtiklis L, Juchno D. 2014. Molecular cytogenetic analysis of the crucian carp, Carassius carassius (Linnaeus, 1758) (Teleostei, Cyprinidae), using chromosome staining and fluorescence in situ hybridisation with rDNA probes. Comparative cytogenetics 8(3): 233–248. https://doi.org/10.3897/CompCytogen.v8i3.7718

Sukham S, Chingakham B, Thoidingjam L, Waikhom G. 2013. Cytogenetic characterization of Devario aequipinnatus (McClelland, 1839) and Devario yuensis (Arunkumar and Tombi, 1998) (Cypriniformes: Cyprinidae) from Manipur, northeast India. Turkish Journal of Zoology. 37(6): 706–712. https://doi.org/10.3906/ZOO-1211-12

Supiwong W, Liehr T, Cioffi MB, Chaveerach A, Kosyakova N, Pinthong K, Tanee T, Tanomtong A. 2014. Chromosomal evolution in naked catfishes (Bagridae, Siluriformes): A comparative chromosome mapping study. Zoologischer Anzeiger 253(4): 316–320. https://doi.org/10.1016/j.jcz.2014.02.004

Supiwong W, Saenjundaeng P, Maneechot N, Chooseangjaew S, Pinthong K, Tanomtong A. 2017. A discovery of nucleolar organizer regions (NORs) polymorphism and karyological analysis of Crystal eye catfish, Hemibagrus wyckii (Siluriformes, Bagridae) in Thailand. Cytologia 82(4): 403–411. https://doi.org/10.1508/cytologia.82.403

Supiwong W, Pinthong K, Seetapan K, Saenjundaeng P, Bertollo LAC, de Oliveira EA, Yano CF, Liehr T, Phimphan S, Tanomtong A, Cioffi MB. 2019. Karyotype diversity and evolutionary trends in the Asian swamp eel Monopterus albus (Synbranchiformes, Synbranchidae): a case of chromosomal speciation? BMC Evolution Biology 19(1): 73. https://doi.org/10.1186/s12862-019-1393-4

Tang KL, Agnew MK, Hirt MV, Sado T, Schneider LM, Freyhof J, Sulaiman Z, Swartz E, Vidthayanon C, Miya M, Saitoh K, Simons AM, Wood RM, Mayden RL. 2010. Systematics of the subfamily Danioninae (Teleostei: Cypriniformes: Cyprinidae). Molecular Phylogenetics Evolution 57(1): 189-214. https://doi.org/10.1016/j.ympev.2010.05.021.

Tautz D, Renz M .1984. Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Research 25: 4127–4138. https://doi.org/10.1093/nar/12.10.4127

Terencio ML, Schneider CH, Gross MC, Vicari MR, Farias IP, Passos KB, Feldberg E .2013. Evolutionary dynamics of repetitive DNA in Semaprochilodus (Characiformes, Prochilodontidae): a fish model for sex chromosome differentiation. Sexual Development 7(6): 325–333. https://doi.org/10.1159/000356691

Ueda T, Naoi H. 1999. BrdU-4Na-EDTA-Giemsa band karyotypes of three small freshwater fish, Danio rerio, Oryzias latipes, and Rhodeus ocellatus. Genome 42: 531–535. https://doi.org/10.1139/g98-153

Vidthayanon C. 2005. Thailand Red Data: Fishes. Office of Natural Resources and Environmental Policy and Planning. Bangkok. [in Thai]

Yeesaem N, Jantarat S, Yeesin P. 2019. Cytogenetic Characterigation of Rasbora einthovenii in Sirindhorn Peat Swamp Forest, Narathiwat Province. Journal Fish Technology Research 13: 58–68. [in Thai]

Yano CF, Poltronieri J, Bertollo LAC, Artoni RF, Liehr T, Cioffi MB. 2014. Chromosomal mapping of repetitive DNAs in Triportheus trifurcatus (Characidae, Characiformes): insights into the differentiation of the Z and W chromosomes. PLoS ONE 9(6): e90946. https://doi.org/10.1371/journal.pone.0090946

Yano CF, Bertollo LAC, Cioffi MB. 2017. Fish-FISH: Molecular cytogenetics in fish species. In: Liehr T (ed.), Fluorescence in situ Hybridization (FISH)-Application Guide, 429–443. Springer, Berlin, Germany.

Yenchum W. 2010. Histological effects of carbofuran on guppy Poecilia reticulata Peters. Ph.D Thesis in Biological Science, Chulalongkorn University, Bangkok, Thailand. [in Thai]

Downloads

Published

2022-09-21

How to Cite

Aiumsumang, S. ., Chaiyasan, P., Khoomsab, K., Supiwong, W., Tanomtong, A., & Phimphan, S. (2022). Comparative chromosome mapping of repetitive DNA in four minnow fishes (Cyprinidae, Cypriniformes). Caryologia, 75(2), 71-80. https://doi.org/10.36253/caryologia-1523

Issue

Section

Articles

Most read articles by the same author(s)