Cytogenotoxic and antimicrobial effects of Nezara viridula (L.) (Hemiptera: Heteroptera: Pentatomidae) alcoholic extracts

Authors

  • Nicoleta Anca Şuţan Department of Natural Sciences, National University of Science and Technology, POLITEHNICA Bucharest - Pitesti Universitary Center https://orcid.org/0000-0001-7459-628X
  • Mircea Bărbuceanu Department of Environmental Engineering and Engineering Applied Sciences, National University of Science and Technology POLITEHNICA Bucharest - Pitesti Universitary Center https://orcid.org/0000-0003-4387-7884
  • Daniela Barbuceanu Department of Natural Sciences, National University of Science and Technology, POLITEHNICA Bucharest - Pitesti Universitary Center
  • Ionica Deliu Department of Natural Sciences, National University of Science and Technology, POLITEHNICA Bucharest - Pitesti Universitary Center

DOI:

https://doi.org/10.36253/caryologia-2389

Keywords:

insect, gender, extracts, bioactivity, mitotic index

Abstract

Due to their multifunctionality and the numerous fields of applicability, insects are extensively studied today for both their biomedical and nutritional properties. In the current study the cytogenotoxic and antimicrobial potential of ethanol and methanol extracts of Nezara viridula (Linnaeus 1758) was evaluated using the Allium test, respectively the disk diffusion test. A mitostimulatory effect of the extracts of N. viridula and a variation of the cytogenotoxic activity of the extracts in a gender-dependent manner was noticed. As well, significant variations of the mitotic index were determined through the type of solvent used and the concentration of the extracts. High frequency chromosomal aberrations and mitotic abnormalities were recorded with high concentration ethanolic extracts. Following the testing of four standard bacterial strains and two standard yeast strains, a slightly antimicrobial activity was observed when compared to control. The use of invasive species in such studies opens up new perspectives on the potential of organisms considered harmful.

Downloads

Download data is not yet available.

References

Aldrich JR, Blum MS, Lloyd HA, Fales HM. 1978. Pentatomid natural products. Chemistry and morphology of the III–IV dorsal abdominal glands of adults. J Chem Ecol. 4(2):161-172. https://doi.org/10.1007/BF00988052.

Bairagi SH. 2019. Insects with potential medicinal significance: a review. Biomed J Sci & Tech Res. 16(3):12024-12027. https://doi.org/10.26717/BJSTR.2019.16.002849

Barrera G, Pizzimenti S, Dianzani MU. 2008. Lipid peroxidation: control of cell proliferation, cell differentiation and cell death. Mol. Aspects Med. 29(1-2):1–8. https://doi.org/10.1016/j.mam.2007.09.012.

Barrera G. 2012. Oxidative stress and lipid peroxidation products in cancer progression and therapy. ISRN Oncol., 2012:137289. https://doi.org/10.5402/2012/137289.

Bonciu E, Firbas P, Fontanetti CS, Wusheng J, Karaismailoğlu MC, Liu D, Menicucci F, Pesnya DS, Popescu A, Romanovsky AV, Schiff S, Ślusarczyk J, de Souza CP, Srivastava A, Sutan A, Papini A. 2018. An evaluation for the standardization of the Allium cepa test as cytotoxicity and genotoxicity assay. Caryologia.71(3):191–209. https://doi.org/10.1080/00087114.2018.1503496.

Borges M, Aldrich J.R. 1992. Instar-specific defensive secretions of stink bugs (Heteroptera: Pentatomidae). Experientia. 48(9):893–896. https://doi.org/10.1007/BF02118429.

Brézot P, Malosse C, Mori K, Renou M. 1994. Bisabolene epoxides in sex pheromone in Nezara viridula (L.) (Heteroptera: Pentatomidae): Role of cis isomer and relation to specificity of pheromone. J Chem Ecol. 20(12):3133-3147. https://doi.org/10.1007/BF02033716.

Choudhury FK, Rivero RM, Blumwald E, Mittler R. 2016. Reactive oxygen species, abiotic stress and stress combination. Plant J. 90(5):856-867. https://doi.org/10.1111/tpj.13299.

Costa-Neto EM. 2002. The use of insects in folk medicine in the State of Bahia, Northeastern Brazil, with notes on insects reported elsewhere in Brazilian folk medicine. Hum Ecol. 30(2):245-263. https://doi.org/10.1023/A:1015696830997.

Ejiofor AO. 2016. Insect Biotechnology. In: Raman C, Goldsmith M, Agunbiade T. (eds) Short Views on Insect Genomics and Proteomics. Entomology in Focus. 4:185-210. https://doi.org/10.1007/978-3-319-24244-6_8.

Faruck MO, Yusof F, Chowdhury S. 2017. Effect of extraction process parameters on antifungal peptides from Supermeal worm, Zophobas morio (Fabricius). IFRJ. 24(Suppl):463-467.

Feng Y, Zhao M., He Z., Chen Z., Sun L. (2009). Research and utilization of medicinal insects in China. Entomol. Res. 39 (5):313–316. https://doi.org/10.1111/j.1748-5967.2009.00236.x.

Figueirêdo RECR, Vasconcellos A, Policarpo IS, Alves RRN. 2015. Edible and medicinal termites: a global overview. J Ethnobiol Ethnomed. 11(29):1-7. https://doi.org/10.1186/s13002-015-0016-4.

Foster T. 2017. Antibiotic resistance in Staphylococcus aureus. Current status and future prospects. FEMS Microbiol. Rev. 41(3):430–449. https://doi.org/10.1093/femsre/fux007.

Gilby AR, Waterhouse DF. 1965. The composition of the scent of the green vegetable bug, Nezara viridula. Proc. R. Soc. Lond. B. 162:105–120. https://doi.org/10.1098/rspb.1965.0027.

Grant WF. 1982. Chromosome aberration assay in Allium. A report of the United States Environmental Protection Agency Gene Toxicity Program. Mutat Res. 99:273-291. https://doi.org/10.1016/0165-1110(82)90046-X.

Jayathilake N, Jayewardena U. 2021. Genotoxic potential of aqueous extract: A sea cucumber species, Bohadschia vitiensis using genotoxicity model Allium cepa. Adv Pharm J. 6(1):9-14. https://doi.org/10.31024/apj.2021.6.1.2.

Koc K, Incekara U, Turkez H. 2014. Biomonitoring of the genotoxic effects and oxidative potentials of commercial edible dung beetles (Onitis sp.), grasshopper (Caelifera sp.) and mole crickets (Gryllotalpa sp.) in vitro. Toxicol Ind Health. 30(8):683–689. doi:10.1177/0748233712457451.

Kuruppuarachchi SU, Jayawardena UA, Gunathilake VK. 2023. Use of the Allium cepa Model to Assess the Cytogenotoxicity of Luffariella herdmani Marine Sponge Extract. ATLA Altern Lab Anim. 51(3):175-187. doi:10.1177/02611929231171943.

Leme DM, Marin-Morales MA. 2009. Allium cepa test in environmental monitoring: A review on its application. Mutat Res. 682:71–81. https://doi.org/10.1016/j.mrrev.2009.06.002.

Lockwood J, Story R. 1987. Defensive Secretion of the Southern Green Stink Bug (Hemiptera: Pentatomidae) as an Alarm Pheromone. Ann. Entomol. Soc. Am. 80(5):686–691. https://doi.org/10.1093/AESA/80.5.686.

Luo XH, Wang XZ, Jiang HL, Yang JL, Crews P, Valeriote FA, Wua QX. 2012. The biosynthetic products of chinese insect medicine, Aspongopus chinensis. Fitoterapia. 83(4):754–758. https://doi.org/10.1016/j.fitote.2012.03.002.

Ma G, Wu L, Shao F, Zhang C, Wan H. 2019. Antimicrobial Activity of 11 Insects Extracts Against Multi Drug Resistant (MDR) Strains of Bacteria and Fungus. IOP Conf. Ser.: Earth Environ. Sci. 252(2):022132. https://doi.org/10.1088/1755-1315/252/2/022132.

Marshall AD, Caldwell J. 1996. Lack of influence of modulators of epoxide metabolism on the genotoxicity of tans-anethole in freshly isolated rat hepatocytes assessed with the unscheduled DNA synthesis assay. FCT. 34(4):337-345. https://doi.org/10.1016/0278-6915(96)00109-3.

Memiş E, Türkez H, Incekara Ü, Banjo AD, Fasunwon BT, Toğar B. 2013. In vitro biomonitoring of the genotoxic and oxidative potentials of two commonly eaten insects in southwestern Nigeria. Toxicol Ind Health. 29(1):52–59. doi:10.1177/0748233712446721.

Meyer-Rochow VB. 2017. Therapeutic arthropods and other, largely terrestrial, folk-medicinally important invertebrates: A comparative survey and review. J Ethnobiol Ethnomed. 13(1):9. https://doi.org/10.1186/s13002-017-0136-0.

Mudalungu CM, Tanga CM, Kelemu S, Torto B. 2021. An Overview of Antimicrobial Compounds from African Edible Insects and Their Associated Microbiota. Antibiotics. 10(6):621. https://doi.org/10.3390/ antibiotics10060621.

Namba T, Ma YH, Inagaki K. 1988. Insect-derived crude drugs in the Chinese Song dynasty. J Ethnopharmacol. 24(2-3):247-85. https://doi.org/10.1016/0378-8741(88)90157-2.

Oho N, Kiritani K. 1960. Bionomics and control of the southern green stink bug. Shokubutsu Boeki [Plant Protect.]. 14:237–241.

Oliva A, Moraes RM, Watson SB, Duke SO, Dayan FE. 2002. Aryltetralin lignans inhibit plant growth by affecting the formation of mitotic microtubular organizing centers. Pestic Biochem Physiol. 72(1):45-54. https://doi.org/10.1006/pest.2002.2582.

Panizzi AR. 2004. Southern Green Stink Bug, Nezara viridula (L.) (Hemiptera: Heteroptera: Pentatomidae). In: Capinera JL editor. Encyclopedia of Entomology. Springer, Dordrecht (The Netherlands): Kluwer Academic Publishers; p. 2058-2059. https://doi.org/10.1007/0-306-48380-7_3989.

Panizzi AR, McPherson JE, James DG, Javahery M, McPherson RM. 2000. Stink bugs (Pentatomidae). In: Schaefer CW, Panizzi AR, editors. Heteroptera of Economic Importance. Boca Raton: CRC Press USA; p. 421-474.

Park BK, Kim MM. 2010. Applications of chitin and its derivatives in biological medicine. Int J Mol Sci. 11:5152-5164. https://doi.org/10.3390/ijms11125152.

Pasupuleti VR, Sammugam L, Ramesh N, Gan SH. 2017. Honey, propolis, and royal jelly: a comprehensive review of their biological actions and health benefits. Oxid Med Cell Longev. p. 1259510. https://doi.org/10.1155/2017/1259510.

Pavis C, Malosse C, Ducrot PH, Descoins C. 1994. Dorsal abdominal glands in nymphs of southern green stink bug, Nezara viridula (L.) (Heteroptera: Pentatomidae): Chemistry of secretions of five instars and role of E)-4-oxo-2-decenal, compound specific to first instars. J Chem Ecol. 20(9):2213-2227. https://doi.org/10.1007/BF02033198.

Rank J. 2003. The method of Allium anaphase-telophase chromosomal aberration assay. Ekologija 1:38-42.

Ratcliffe N, Azambuja P, Mello CB. 2014. Recent advances in developing insect natural products as potential modern day medicines. Evid Based Complement Alternat Med. 2014:904958. https://doi.org/10.1155/2014/904958.

Ratcliffe NA, Mello CB, Garcia ES, Butt TM, Azambuja P. 2011. Insect natural products and processes: new treatments for human disease. Insect Biochem Mol Biol. 41(10):747-769. https://doi.org/10.1016/j.ibmb.2011.05.007.

Rauh R, Khal S, Boechzelt H, Bauer R, Kaina B, Efferth T. 2007. Molecular biology of chantaridin in cancer cells. Chin Med. 2:8. https://doi.org/10.1186/1749-8546-2-8.

Sahoo A, Swain SS, Behera A, Sahoo G, Mahapatra PK, Panda SK. 2021. Antimicrobial Peptides Derived from Insects Offer a Novel Therapeutic Option to Combat Biofilm: A Review. Front Microbiol. 12:661195. https://doi.org/10.3389/fmicb.2021.661195.

Seabrooks L, Hu L. 2017. Insects: an underrepresented resource for the discovery of biologically active natural products. Acta Pharm Sin B. 7(4):409–426. https://doi.org/10.1016/j.apsb.2017.05.001.

Sherman RA, Hall MJR, Thomas S. 2000. Medicinal Maggots: an ancient remedy for some contemporary afflictions. Annu Rev Entomol. 45:55-81. https://doi.org/10.1146/annurev.ento.45.1.55.

Sturaro A, Parvoli G, Doretti L. 1994. A simple and fast sampling method for the characterization of volatile compounds released by Nezara viridula. Chromatographia. 39(1/2):103-106. https://doi.org/10.1007/BF02320467.

Tan J., Tian Y., Cai R., Yi T., Jin D., Guo J. 2019. Antiproliferative and proapoptotic effects of a protein component purified from aspongopus chinensis Dallas on cancer cells in vitro and in vivo. Evid Based Complement Alternat Med. 2019. 8934794. https://doi.org/10.1155/2019/8934794

Tanaka K, Hadwiger LA. 2017. Nonhost resistance: Reactive oxygen species (ROS) signal causes DNA damage prior to the induction of PR genes and disease resistance in pea tissue. Physiol Mol Plant Pathol. 98:18-24.

Trofa D, Gácser A, Nosanchuk J. 2008. Candida parapsilosis, an Emerging Fungal Pathogen. Clin Microbiol Rev. 21(4):606-625. doi: 10.1128/CMR.00013-08.

Turkez H, Incekara U, Güner A, Aydın E, Dirican E, Togar B. (2014). The cytogenetic effects of the aqueous extracts of migratory locust (Locusta migratoria L.) in vitro. Toxicol Ind Health. 30(3):233–237. doi:10.1177/0748233712452610.

Ulicsni V, Svanberg I, Molnár Z. 2016. Folk knowledge of invertebrates in Central Europe - folk taxonomy, nomenclature, medicinal and other uses, folklore, and nature conservation. J Ethnobiol Ethnomed. 12(1):1-47. https://doi.org/10.1186/s13002-016-0118-7.

Wehbe R, Frangieh J, Rima M, El Obeid D, Sabatier J-M, Fajloun Z. 2019. Bee venom: overview of main compounds and bioactivities for therapeutic interests. Molecules. 24(16):2997. https://doi.org/10.3390/molecules24162997.

Yong HI, Kim TK, Cha JY, Lee JH, Kang MC, Jung S, Choi YS. 2023. Effects of edible insect extracts on the antioxidant, physiochemical, and microbial properties of Tteokgalbi during refrigerated storage. Food Biosci. 52:102377. https://doi.org/10.1016/j.fbio.2023.102377.

Zhang E, Ji X, Ouyang F, Lei Y, Deng S, Rong H, Deng X, Shen H. 2023. A minireview of the medicinal and edible insects from the traditional Chinese medicine (TCM). Front Pharmacol. 14:1125600. https://doi.org/10.3389/fphar.2023.1125600.

Zhu X, Hondroulis E, Liu W, Li Y. 2013. Biosensing approaches for rapid genotoxicity and cytotoxicity assays upon nanomaterial exposure. Small. 9(9-10): 1821–1830. https://doi.org/10.1002/smll.201201593.

Downloads

Published

2024-03-15

How to Cite

Şuţan, N. A., Bărbuceanu, M., Barbuceanu, D., & Deliu, I. (2024). Cytogenotoxic and antimicrobial effects of Nezara viridula (L.) (Hemiptera: Heteroptera: Pentatomidae) alcoholic extracts. Caryologia, 76(4), 39–49. https://doi.org/10.36253/caryologia-2389

Issue

Section

Articles

Most read articles by the same author(s)