Phytotoxicity, cytogenotoxicity and antimicrobial potential of extracts with gold-silver bimetallic nanoparticles obtained from pteridophyte spores
DOI:
https://doi.org/10.36253/caryologia-2424Keywords:
spore extracts, Asplenium scolopendrium L., Dryopteris filix-mas (L.) Schott, phytosynthesis, gold-silver nanoparticles, phytotoxicity, cell viability, cytogenotoxicity, antibacterial potentialAbstract
Investigating the toxicity of naturally occurring or synthesized nanoparticles for various applications is absolutely necessary for environmental protection and safety use. The aim of these research was to investigated the phytotoxicity, cytogenotoxicity and antibacterial potential of the extracts with gold-silver bimetallic nanoparticles (Au-Ag NPs) obtained from green synthesis in Asplenium scolopendrium L. and Dryopteris filix-mas (L.) Schott spores extracts. To our knowledge, this is the first report of the Au-Ag NPs phytosynthesis based on extracts obtained from fern spores. UV-Vis spectroscopy analysis of the samples revealed the maximum absorbance, characteristic of samples with bimetallic nanoparticles, which varied depending on the Au:Ag ratio. Energy-dispersive X-ray spectroscopy confirmed the presence and distribution of Au, Ag and other chemical elements. The presence of specific secondary metabolites in the extracts that helped in NPs biosynthesis stimulated growth processes. Good results were recorded for some Dryopteris filix-mas samples, correlated with a significantly increased mitotic index. Cell viability decreased significantly in three of the nanoformulations. Only extracts with Au-Ag NPs showed antimicrobial effect against Staphylococcus aureus ATCC 25923, Bacillus subtilis ATCC 6633 and Escherichia coli ATCC 8739. The testing of the antibacterial potential of these extracts must be extended to other bacterial strains and other microorganisms, the search of new antimicrobial resources being an urgent necessity nowadays.
Downloads
References
Abdelsalam NR, Fouda MMG, Abdel-Megeed A, Ajarem J, Allam AA, El-Naggar ME. 2019. Assessment of silver nanoparticles decorated starch and commercial zinc nanoparticles with respect to their genotoxicity on onion. Int J Biol Macromol. 133:1008-1018. https://doi.org/10.1016/j.ijbiomac.2019.04.134
Abouhaswa AS, Almurayshid M, Almasoud F. Sayyed MI, Mahmoud KA. 2022. Examinations the optical, mechanical, and shielding properties of Ag2O doped B2O3–Bi2O3–SrF2–Na2O glasses for gamma ray shield applications. Sci Rep. 12:3548. https://doi.org/10.1038/s41598-022-07450-7
Adamakis I-D, Eleftheriou E. 2019. Structural evidence of programmed cell death induction by tungsten in root tip cells of Pisum sativum. Plants 8(3):62. https://doi.org/10.3390/plants8030062
Ahmed B, Shahid M, Khan MS, Musarrat J. 2018. Chromosomal aberrations, cell suppression and oxidative stress generation induced by metal oxide nanoparticles (MONPs) in onion (Allium cepa) bulb. Metallomics 10(9):1315-1327. https://doi.org/10.1039/c8mt00093j
Amina M, Al Musayeib NM, Alarfaj NA, El-Tohamy MF, Al-Hamoud GA. 2020. Antibacterial and immunomodulatory potentials of biosynthesized Ag, Au, Ag-Au bimetallic alloy nanoparticles using the Asparagus racemosus root extract. Nanomat. 10(12): 2453. https://doi.org/10.3390/nano10122453
Azooz MM, Abou-Elhamd MF, Al-Fredan MA. 2012. Biphasic effect of copper on growth, proline, lipid peroxidation and antioxidant enzyme activities of wheat (Triticum aestivum cv. Hasaawi) at early growing stage. Austal J Crop Sci. 6(4):688-694.
Baker CJ, Mock NM. 1994. An improved method for monitoring cell death in cell suspension and leaf disc assays using Evans blue. Plant Cell Tiss Organ Cult. 39:7-12.
Balalakshmi C, Gopinath K, Govindarajan M, Lokesh R, Arumugam A, Alharbi NS, Kadaikunnan S, Khaled JM, Benelli G. 2017. Green synthesis of gold nanoparticles using a cheap Sphaeranthus indicus extract: Impact on plant cells and the aquatic crustacean Artemia nauplii. J Photochem Photobiol B: Biol. 173:598-605. https://doi.org/10.1016/j.jphotobiol.2017.06.040
Bhui DP, Bar H, Sarkar P, Sahoo GP, De SP, Misra A, 2009. Synthesis and UV-Vis spectroscopic study of silver nanoparticles in aqueous SDS solution. J Mol Liquids 145(1):33-37. https://doi.org/10.1016/j.molliq.2008.11.014
Bonciu E, Firbas P, Fontanetti CS, Wusheng J, Karaismailoğlu MC, Liu D, Menicucci F, Pesnya DS, Popescu A, Romanovsky AV, Schiff S, Ślusarczyk J, de Souza CP, Srivastava A, Sutan A, Papini A. 2018. An evaluation for the standardization of the Allium cepa test as cytotoxicity and genotoxicity assay. Caryologia 71(3):191-209. https://doi.org/10.1080/00087114.2018.1503496
Chatterjee A, Khatua S, Acharya K, Sarkar J. 2019. A green approach for the synthesis of antimicrobial bio-surfactant silver nanoparticles by using a fern. Dig J Nanomater Biostruct. 14(2):479-490.
Chen PY, Lee KT, Chi WC, Hirt H, Chang CC, Huang H.J. 2008. Possible involvement of MAP kinase pathways in acquired metal-tolerance induced by heat in plants. Planta 228(3):499-509. https://doi.org/10.1007/s00425-008-0753-x
Çıplak Z, Gökalp C, Getiren B, Yıldız A, Yıldız N, 2018. Catalytic performance of Ag, Au and Ag-Au nanoparticles synthesized by lichen extract. Green Process Synth 7:433-440. https://doi.org/10.1515/gps-2017-0074
Drăghiceanu OA, Fierăscu I, Fierăscu RC, Bradzis R, Dobrescu CM, Soare LC. 2019. Considerations regarding the Triticum phytotoxicity test. Curr Trends Nat Sci. 8(15):48-55.
Drăghiceanu OA, Șuțan AN, Dobrescu CM, Bătut-Andrei ND, Soare LC, Topală CM. 2021. Characterization in terms of composition and phytotoxicity of aqueous spores extract. Curr Trends Nat Sci. 10(20):53-60. https://doi.org/10.47068/ctns.2021.v10i20.008
Ettadili FE, Aghris S, Laghrib F, Farahi A, Saqrane S, Bakasse M, Lahrich S, El Mhammedi MA. 2022. Recent advanced in the nanoparticles synthesis using plant extract: applications and future recommendations. J Mol Struct. 1248:131538. https://doi.org/10.1016/j.molstruc.2021.131538
Fierăscu I, Milen IG, Ortan A, Fierăscu RC, Avramescu SM, Ionescu D, Şuţan A, Brînzan A, Ditu LM. 2017a. Phyto-mediated metallic nanoarchitectures via Melissa officinalis L.: synthesis, characterization and biological properties. Sci Rep. 7:12428. https://doi.org/10.1038/s41598-017-12804-7
Fierăscu RC, Milen IG, Fierăscu I, Ungureanu C, Avramescu SM, Ortan A, Georgescu MI, Șuțan, NA, Zanfirescu A, Dinu-Pirvu CE, Velescu BS, Anuta V. 2017b. Mitodepressive, antioxidant, antifungal and anti-inflammatory effects of wild-growing Romanian native Arctium lappa L. (Asteraceae) and Veronica persica Poiret (Plantaginaceae). Food Chem Tox. 111:44-52. https://doi.org/10.1016/j.fct.2017.11.008
Fierăscu RC, Fierăscu I, Lungulescu EM, Nicula N, Somoghi R, Diţu LM, Ungureanu C, Șuțan AN, Drăghiceanu OA, Păunescu A, Soare LC. 2020. Phytosynthesis and radiation-assisted methods for obtaining metal nanoparticles. J Mat Sci. 55:1915-1932. https://doi.org/10.1007/s10853-019-03713-3
Garcia AG, Lopes PP, Gomes JF, Pires C, Ferreira EB, Lucena RGM, Gasparotto LHS, Tremiliosi-Filho G. 2014. Eco-friendly synthesis of bimetallic AuAg nanoparticles. New J. Chem. 38(7):2865-2873. https://doi.org/10.1039/c4nj00041b
Godipurge SS, Yallappa S, Biradar NJ, Biradar JS, Dhananjaya BL, Hedge G, Jagadish K, Hedge G. 2016. A facile and green strategy for the synthesis of Au, Ag, and Au-Ag alloy nanoparticles using aerial part of R. hypocrateriformis extract and their biological evaluation, Enz. Microb. Technol. 95:174-184. https://doi.org/10.1016/j.enzmictec.2016.08.006
Gopinath K, Venkatesh KS, Ilangovan R, Sankaranarayanan K, Arumugam A. 2013. Green synthesis of gold nanoparticles from leaf extract of Terminalia arjuna, for the enhanced mitotic cell division and pollen germination activity. Ind Crops Prod. 50:737-742. https://doi.org/10.1016/j.indcrop.2013.08.060
Harada A, Ichimaru H, Kawagoe T, Tsushida M, Niidome Y, Tsutsuki H, Sawa T, Niidome T. 2018. Gold-Treated Silver Nanoparticles Have Enhanced Antimicrobial Activity. Bull Chem Soc Japan. 92:297-301. https://doi.org/10.1246/bcsj.20180232
Hilty J, Muller B, Pantin F, Leuzinger S. 2021. Plant growth: the What, the How, and the Why. New Phytol. 232(1):25-41. https://doi.org/10.1111/nph.17610
Hoshina M, Marin-Morales M.A. 2009. Micronucleus and chromosome aberrations induced in onion (Allium cepa) by a petroleum refinery effluent and by river water that receives this effluent. Ecotoxicol Environ Saf. 72:2090-209. https://doi.org/10.1016/j.ecoenv.2009.07.002
Hu J, Xianyu Y. 2021. When nano meets plants: A review on the interplay between nanoparticles and plants. Nano Today 38:101143. https://doi.org/10.1016/j.nantod.2021.101143
Huleihel M, Salman A, Erukhimovich V, Ramesh J, Hammody Z, Mordechai S. 2002. Novel optical method for study of viral carcinogenesis in vitro. J Biochem Biophys Meth. 50:111-121. https://doi.org/10.1016/s0165-022x(01)00177-4
Jahn CE, Mckay JK, Mauleon R, Stephens J, McNally KL, Bush DR, Leung H, Leach JE. 2010. Genetic Variation in Biomass Traits among 20 Diverse Rice Varieties. Plant Physiol. 155(1):157-168. https://doi.org/10.1104/pp.110.165654
Jasrotia T, Chaudhary S, Kaushik A, Kumar R, Chaudhary GR. 2020. Green chemistry-assisted synthesis of biocompatible Ag, Cu, and Fe2O3 nanoparticles. Mat Today Chem. 15:100214. https://doi.org/10.1016/j.mtchem.2019.100214.2
Kannaujia R, Srivastava CM, Prasad V, Singh BN, Pandey V. 2019. Phyllanthus emblica fruit extract stabilized biogenic silver nanoparticles as a growth promoter of wheat varieties by reducing ROS toxicity. Plant Physiol Biochem. 142:460-471. https://doi.org/10.1016/j.plaphy.2019.08.008
Kumari M, Mukherjee A, Chandrasekaran N. 2009. Genotoxicity of silver nanoparticles in Allium cepa. Sci Total Environ. 407:5243-5246. https://doi.org/10.1016/j.scitotenv.2009.06.024
Kunjiappan S, Bhattacharjee C, Chowdhury R. 2015. Hepatoprotective and antioxidant effects of Azolla microphylla based gold nanoparticles against acetaminophen induced toxicity in a fresh water common carp fish (Cyprinus carpio L.). Nanomed J. 2(2):88-110. https://doi.org/10.7508/nmj.2015.02.002
Latif-ur-Rahman, Shah A, Khan SB, Asiri AM, Hussain H, Han C, Qureshi R, Ashiq MN, Zia MA, Ishaq M, Kraatz HB. 2015. Synthesis, characterization, and application of Au-Ag alloy nanoparticles for the sensing of an environmental toxin, pyrene. J Appl Electrochem. 45(5):463-472. https://doi.org/10.1007/s10800-015-0807-2
López-Pozo M, Fernández-Marín B, García-Plazaola JY, Ballesteros D. 2018. Desiccation Tolerance in Ferns: From the Unicellular Spore to the Multi-tissular Sporophyte. In Fernández H. editor. Current Advances in Fern Research. Springer, Cham; p. 401-426, https://doi.org/10.1007/978-3-319-75103-0_19
Makarov VV, Love AJ, Sinitsyna OV, Makarova SS, Yaminsky IV, Taliansky ME, Kalinina NO. 2014. “Green” nanotechnologies: synthesis of metal nanoparticles using plants. Acta Nat. 6(1):35-44.
Malathi S, Ezhilarasu T, Abiraman T, Balasubramanian S. 2014. One pot green synthesis of Ag, Au and Au-Ag alloy nanoparticles using isonicotinic acid hydrazide and starch. Carb Pol. 111:734-743. https://doi.org/10.1016/j.carbpol.2014.04.105
Nasrollahzadeh M, Sajjadi M, Sajadi SM, Issaabadi Z. 2019. Green Nanotechnology. In An Introduction to Green Nanotechnology, Nasrollahzadeh, M, Sajadi, S.M., Sajjadi, M., Issaabadi, Z., Atarod, M., Editors, Elsevier, Interface Science and Technology, pp 145-198. https://doi.org/10.1016/b978-0-12-813586-0.00005-5
Palácio SM, de Almeida JCB, de Campos ÉA, Veit MT, Ferreira LK, Deon MTM. 2021. Silver nanoparticles effect on Artemia salina and Allium cepa organisms: influence of test dilution solutions on toxicity and particles aggregation. Ecotoxicol. 30(5):836-850. https://doi.org/10.1007/s10646-021-02393-7
Panicker S, Ahmady IM, Han C, Chehimi M, Mohamed AA. 2020. On demand release of ionic silver from gold-silver alloy nanoparticles: fundamental antibacterial mechanisms study. Mat Today Chem. 16:100237. https://doi.org/10.1016/j.mtchem.2019.100237
Patel AK, Gupta D, Singh A, Mishra VK, Sharma NK. 2021. Green - synthesized nanoparticles for treatment of wastewater: an environmentally sustainable pollution remediation technology. In Sustainable Environmental Clean-up, Green Remedation; Mishra VK, Kumar A, Eds., Elsevier, pp. 29-70. https://doi.org/10.1016/B978-0-12-823828-8.00002-5.
Pathipati UR, Kanuparthi PL. 2018. Biological and Phytotoxic Impacts of a Nanomaterial. In Phytotoxicity of Nanoparticles; Faisal, M., Saquib Q., Alatar, A.A., Al-Khedhairy, A.A., Eds., Springer Cham., pp. 229-240. https://doi.org/10.1007/978-3-319-76708-6_9
Peterhansel C, Maurino VG. 2010. Photorespiration Redesigned. Plant Physiol, 155(1):49-55. https://doi.org/10.1104/pp.110.165019
Prajitha V, Thoppil JE. 2016. Cytotoxic and apoptotic activities of extract of Amaranthus spinosus L. in Allium cepa and human erythrocytes. Cytotechnol. 69(1):123-133. https://doi.org/10.1007/s10616-016-0044-5
Qin Z, Zheng Y, Wang Y, Du T, Li C, Wang X, Jiang H. 2021. Versatile roles of silver in Ag-based nanoalloys for antibacterial applications, Coord Chem Rev. 449, 214218. https://doi.org/10.1016/j.ccr.2021.214218
Radji M, Agustama RA, Elya B, Tjampakasari CR. 2013. Antimicrobial activity of green tea extract against isolates of methicillin-resistant Staphylococcus aureus and multi-drug resistant Pseudomonas aeruginosa. Asian Pac J Trop Biomed. 3(8):663-667. https://doi.org/10.1016/S2221-1691(13)60133-1
Rajalakshmi TU, Sheeba H, Doss A, Veerabahu R, Sivagnanam A, Alfarraj S, Alharbi SA, Subbiah J, Mariselvam R. 2023. Synthesis of silver nanoparticles from natural derived embelin compound and their uses in mercury degradation under solar light. Mat Res Express. 10(5):055502. https://doi.org/10.1088/2053-1591/acd2ad
Rajeshwari A, Roy B, Chandrasekaran N, Mukherjee A. 2016. Cytogenetic evaluation of gold nanorods using Allium cepa test. Plant Physiol Biochem. 109:209-219. https://doi.org/10.1016/j.plaphy.2016.10.003
Rao KJ, Korumilli T, Jakkala S, Singh K, Vidya K. 2021. Optimization of the one-step green synthesis of silver and gold nanoparticles using aqueous Athyrium filix femina extract using the Taguchi method. BioNanoSci. 11:915-922. https://doi.org/10.1007/s12668-021-00909-3
Reddy RP, Varaprasad K, Narayana Reddy, N., Mohana Raju, K., Reddy, N.S. 2012. Fabrication of Au and Ag bi-metallic nanocomposite for antimicrobial applications. J Appl Polymer Sci. 125(2):1357-1362. https://doi.org/10.1002/app.35192
Ma C, He M, Zhong Q, Ouyang W, Lin C, Liu X. 2019. Uptake, translocation and phytotoxicity of antimonite in wheat (Triticum aestivum), The Sci Total Environ. 669:421-430. https://doi.org/10.1016/j.scitotenv.2019.03.145
Ries SK, Everson EH. 1973. Protein content and seed size relationships with seedling vigor of wheat cultivars. Agron J. 65:884-886.
Salunke GR, Ghosh S, Kumar RJS, Khade S, Vashisth P, Kale T, Chopade S, Pruthi V, Kundu G, Bellare JR, Chopade BA, 2014. Rapid efficient synthesis and characterization of silver, gold, and bimetallic nanoparticles from the medicinal plant Plumbago zeylanica and their application in biofilm control. Int J Nanomed. 9:2635-2653. https://doi.org/10.2147/ijn.s59834
Sant DG, Gujarathi TR, Harne SR, Ghosh S, Kitture R, Kale S, Chopade BA, Pardesi KR. 2013. Adiantum philippense L. frond assisted rapid green synthesis of gold and silver nanoparticles. J Nanopart. 182320. https://doi.org/10.1155/2013/182320
Saucedo AL, Hernández-Domínguez EE, de Luna-Valdez LA, Guevara-García AA, Escobedo-Moratilla A, Bojorquéz-Velázquez E, del Río-Portilla F, Fernández-Velasco DA, Barba de la Rosa AP. 2017. Insights on Structure and Function of a Late Embryogenesis Abundant Protein from Amaranthus cruentus: An Intrinsically Disordered Protein Involved in Protection against Desiccation, Oxidant Conditions, and Osmotic Stress. Front Plant Sci. 8:497. https://doi.org/10.3389/fpls.2017.00497
Scherer MD, Sposito JCV, Falco WF, Grisolia AB, Andrade LHC, Lima SM, Machado G, Nascimento VA, Gonçalves DA, Wender H, Oliveira SL, Caires ARL. 2019. Cytotoxic and genotoxic effects of silver nanoparticles on meristematic cells of Allium cepa roots: A close analysis of particle size dependence. Sci Total Environ. 660:459-467. https://doi.org/10.1016/j.scitotenv.2018.12.444
Shume WM, Murthy HCA, Zereffa EA. 2020. A Review on Synthesis and Characterization of Ag2O Nanoparticles for Photocatalytic Applications J Chem. 5039479. https://doi.org/10.1155/2020/5039479
Soare LC, Şuţan AN. 2018. Current trends in pteridophyte extracts: from plant to nanoparticles. In Current Advances in Fern Research, Fernandez H., Eds., Springer, pp. 329-357. https://doi.org/10.1007/978-3-319-75103-0_16
Soare LC, Păunescu A, Dobrescu CM, Neblea MA, Dorobăț LM. 2021. Ferns – a valuable plant resource in modern research. In Development of plant extracts and innovative phytosynthesized nanostructures mixtures with phytotherapeutic applications, in order to reduce biocenotic stress in horticultural crops, Fierăscu RC, Fierăscu I, Soare LC, Eds., Ruse Press, pp. 27-44.
Su D. 2017. Advanced electron microscopy characterization of nanomaterials for catalysis. Green Energy Environ. 2(2):70-83. https://doi.org/10.1016/j.gee.2017.02.001
Şuţan NA, Fierăscu I, Fierăscu RC, Manolescu DS, Soare LC. 2016. Comparative analytical characterization and in vitro cytogenotoxic activity evaluation of Asplenium scolopendrium L. leaves and rhizome extracts prior to and after Ag nanoparticles phytosynthesis. Ind Crops Prod. 83:379-386. https://doi.org/10.1016/j.indcrop.2016.01.011
Șuțan NA, Fierăscu I, Șuțan C, Soare LC, Neblea AM, Somoghi R, Fierăscu RC. 2021. In vitro mitodepressive activity of phytofabricated silver oxide nanoparticles (Ag2O-NPs) by leaves extract of Helleborus odorus Waldst. & Kit. ex Willd, Mat Lett. 286:129194. https://doi.org/10.1016/j.matlet.2020.129194
Tamuly C, Hazarika M, Borah SC, Das MR, Boruah MP. 2013. In situ biosynthesis of Ag, Au and bimetallic nanoparticles using Piper pedicellatum C.DC: Green chemistry approach. Coll Surf B: Biointerf. 102:627-634. https://doi.org/10.1016/j.colsurfb.2012.09.007
USEPA, 2005. Nanotechnology white paper external review draft. https://www.epa.gov/osa/pdfs/EPA_nanotechnology_white_paper_external_review_draft_12-02-2005
Usuda H. 2004. Evaluation of the effect of photosynthesis on biomass production with simultaneous analysis of growth and continuous monitoring of CO2 exchange in the whole plants of radish, cv Kosena under ambient and elevated CO2. Plant Prod Sci. 7(4):386-396. https://doi.org/10.1626/pps.7.386
Vijayaraghavareddy P, Adhinarayanreddy V, Ramu SV, Sreeman S, Udayakumar M. 2017. Quantification of membrane damage/cell death using Evan’s blue staining technique. Bioprot. 7(16): e2519. https://doi.org/10.21769/BioProtoc.2519
Yang XC, Hwa CM. 2008. Genetic modification of plant architecture and variety improvement in rice. Heredity 101:396-404
Zhang H, Chena S, Jia X, Huang Y, Ji R, Zhao L. 2021. Comparation of the phytotoxicity between chemically and green synthesized silver nanoparticles. Sci Total Environ. 752:142264. https://doi.org/10.1016/j.scitotenv.2020.142264
Zhang WY, Wang Q, Li M, Dang F, Zhou DM. 2019. Nonselective uptake of silver and gold nanoparticles by wheat. Nanotoxicol. 13(8):1073-1086. https://doi.org/10.1080/17435390.2019.1640909
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Liliana Cristina Soare, Oana Alexandra Luțu, Irina Fierăscu, Radu-Claudiu Fierăscu, Codruța Mihaela Dobrescu, Alina Păunescu, Cristina Maria Ponepal, Carmen Mihaela Topală, Loredana Elena Vîjan, Ionica Deliu, Aurelian Denis Negrea, Denisa Ștefania Vîlcoci, Georgiana Cîrstea, Florentina Aldea, Sorina Octavia Honțaru, Anca Nicoleta Șuțan
This work is licensed under a Creative Commons Attribution 4.0 International License.
- Copyright on any open access article in a journal published byCaryologia is retained by the author(s).
- Authors grant Caryologia a license to publish the article and identify itself as the original publisher.
- Authors also grant any third party the right to use the article freely as long as its integrity is maintained and its original authors, citation details and publisher are identified.
- The Creative Commons Attribution License 4.0 formalizes these and other terms and conditions of publishing articles.
- In accordance with our Open Data policy, the Creative Commons CC0 1.0 Public Domain Dedication waiver applies to all published data in Caryologia open access articles.