In vitro cytotoxic activity of phytosynthesized silver nanoparticles using Clematis vitalba L. (Ranunculaceae) aqueous decoction


  • Nicoleta Anca Sutan Department of Natural Sciences, National University of Science and Technology POLITEHNICA Bucharest, Pitesti University Centre
  • Diana Ionela Popescu (Stegarus) National Research and Development Institute for Cryogenics and Isotopic Technologies–ICSI Ramnicu Valcea, 4th Uzinei Street, 240050 Ramnicu Valcea
  • Oana Alexandra Drăghiceanu Department of Natural Sciences, National University of Science and Technology POLITEHNICA Bucharest, Pitesti University Centre
  • Carmen Topală Department of Environmental Engineering and Applied Sciences, National University of Science and Technology POLITEHNICA Bucharest, Pitesti University Centre
  • Claudiu Şuţan Department of Environmental Engineering and Applied Sciences, National University of Science and Technology POLITEHNICA Bucharest, Pitesti University Centre
  • Aurelian Denis Negrea Regional Center of Research and Development for Materials, Processes and Innovative Products Dedicated to the Automotive Industry, National University of Science and Technology POLITEHNICA Bucharest, Pitesti University Centre
  • Denisa Ştefania Vîlcoci Regional Center of Research and Development for Materials, Processes and Innovative Products Dedicated to the Automotive Industry, National University of Science and Technology POLITEHNICA Bucharest, Pitesti University Centre
  • Georgiana Cîrstea Regional Center of Research and Development for Materials, Processes and Innovative Products Dedicated to the Automotive Industry, National University of Science and Technology POLITEHNICA Bucharest, Pitesti University Centre
  • Sorin Georgian Moga Regional Center of Research and Development for Materials, Processes and Innovative Products Dedicated to the Automotive Industry, National University of Science and Technology POLITEHNICA Bucharest, Pitesti University Centre
  • Liliana Cristina Soare Department of Natural Sciences, National University of Science and Technology POLITEHNICA Bucharest, Pitesti University Centre



Clematis vitalba, AgNPs, biosynthesis, cytogenotoxicity, phytotoxicity


In this study, we report a bottom-up approach for silver nanoparticles (AgNPs) synthesis using aqueous decoction of aerial parts of Clematis vitalba L. The phytosynthesized AgNPs were characterized by X-ray diffraction (XRD), UV-vis spectroscopy, Fourier Transform-Infrared Spectroscopy (FTIR), Scanning Electron Microscopy coupled with Energy Dispersive X-ray Spectroscopy (SEM-EDS) and Bright Field Scanning Transmission Electron Microscopy (BFSTEM). The cytogenotoxicity and phytotoxicity assays of AgNPs were assessed by using Allium test, Evans blue and 2, 3, 5-triphenyl tetrazolium chloride (TTC) staining, root and stem growth potential, and biomass evaluation. The results revealed that AgNPs were in the size range of 1-15 nm and spherical shape. The biosynthesized AgNPs augment the mitodepressive effect, disruption of cellular metabolism, impairment of root and stem growth, and biomass reduction induced by C. vitalba aqueous extracts. These results outline the toxicological profile of the C. vitalba extracts, as well as of the phytogenerated AgNPs and provides scientific perspectives on the use of C. vitalba extracts as reducing and stabilizing agent for the phytosynthesis of metallic nanoparticles.


Download data is not yet available.


Agnihotri S, Mukherji S, Mukherji S. 2014. Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Adv. 4:3974–3983. doi: 10.1039/C3RA44507K.

Ancuceanu R, Căplănuși R, Anghel IA, Stoicescu CS, Hovaneț MV, Dinu M. 2018. Assessment of Anemone nemorosa L. toxicity. Acta Med Marisiensis, 64 Supplement 3:7-7.1/2.

Arabshahi-Delouee S, Urooj A. 2007. Application of phenolic extracts from selected plants in fruit juice. Int J Food Prop. 10:479-488. doi: 10.1080/10942910600891279.

Azooz MM, Abou-Elhamd MF, Al-Fredan MA. 2012. Biphasic effect of copper on growth, proline, lipid peroxidation and antioxidant enzyme activities of wheat (Triticum aestivum cv. Hasaawi) at early growing stage. Aust J Crop Sci. 6:688–694.

Bonciu E, Firbas P, Fontanetti CS, Wusheng J, Karaismailoğlu MC, Liu D, Menicucci F, Pesnya DS, Popescu A, Romanovsky AV, et al. 2018. An evaluation for the standardization of the Allium cepa test as cytotoxicity and genotoxicity assay. Caryologia 71(3):191–209. doi: 10.4236/ajps.2020.111002.

Borchert H, Shevchenko EV, Robert A, Mekis I, Kornowski A, Grubel G, Weller H, 2005. Determination of Nanocrystal Sizes: A Comparison of TEM, SAXS, and XRD Studies of Highly Monodisperse CoPt3 Particles. Langmuir, 21(5):1931–1936. doi: 10.1021/la0477183.

Bungard R. 1996. Ecological and physiological studies of Clematis vitaba L. Doctoral (PhD) Theses Lincoln University.

Calabrese EJ, Baldwin LA. 2002. Defining hormesis. Hum Exp Toxicol. 21:91–97. doi: 1191/0960327102ht217oa.

Chhatre A, Solasa P, Sakle S, Thaokar R, Mehra A. 2012. Color and surface plasmon effects in nanoparticle systems: Case of silver nanoparticles prepared by microemulsion route. Colloids Surf. A Physicochem Eng Asp. 404:83-92. doi: 10.1016/j.colsurfa.2012.04.016.

Cui D, Zhang P, Ma Y, He X, Li Y, Zhao Y, Zhang Z. 2014. Phytotoxicity of silver nanoparticles to cucumber (Cucumis sativus) and wheat (Triticum aestivum). J Zhejiang Univ Sci A 15:662–670. doi: 10.1631/jzus.A1400114.

Da-Cheng H. 2019. Mining chemodiversity from biodiversity: Pharmacophylogeny of Ranunculaceae medicinal plants, In: Da-Cheng H, editor. Ranunculales medicinal plants. Academic Press, p. 35-71.

De Keijzer J, Mulder BM, Janson ME. 2014. Microtubule networks for plant cell division. Syst Synth Biol. 8:187–194. doi: 10.1007/s11693-014-9142-x.

De Ronde JA, van der Mescht A.1997. 2,3,5-triphenyltetrazolium chloride reduction as a measure of drought tolerance and heat tolerance in cotton. S Afr J Sci. 93:431–439.

Desai R, Mankad V, Gupta SK, Jha P. 2012. Size distribution of silver nanoparticles: UV-visible spectroscopic assessment. Nanosci Nanotechnol Lett. 4:30–34. doi: 10.1166/nnl.2012.1278.

Duke JA. 1985. CRC Handbook of medicinal herbs, CRC Press, Boca Raton, Florida.

El-Ghamery AA, Al-Nahas AI, Mansour MM. 2000. The action of atrazine herbicide as an inhibitor of cell division on chromosomes and nucleic acids content in root meristems of Allium cepa and Vicia faba. Cytologia 65:277-287. doi: 10.1508/cytologia.65.277.

Eswaran A, Muthukrishnan S, Mathaiyan M, Pradeepkumar S, Rani MK, Manogaran P. 2021. Green synthesis, characterization and hepatoprotective activity of silver nanoparticles synthesized from pre-formulated Liv-Pro-08 poly-herbal formulation. Appl Nanosci. doi: 10.1007/s13204-021-01945-x.

Filippin L, Jović J, Cvrković T, Forte V, Clair D, Toševski I, Boudon-Padieu E, Borgo M., Angelini E. 2009. Molecular characteristics of phytoplasmas associated with flavescence dorée in clematis and grapevine and preliminary results on the role of Dictyophara europaea as a vector. Plant Pathol. 58:826-837. doi:10.1111/j.1365-3059.2009.02092.x.

Fiskesjö G. 1985. The Allium test as a standard in environmental monitoring. Hereditas 102:99-112. doi: 10.1111/j.1601-5223.1985.tb00471.x.

Geisler-Lee J, Brooks M, Gerfen JR, Wang Q, Fotis C, Sparer A, Ma X, Berg RH, Geisler M. 2014. Reproductive toxicity and life history study of silver nanoparticle effect, uptake and transport in Arabidopsis thaliana. Nanomaterials (Basel) 4:301-318. doi: 10.3390/nano4020301.

Geisler-Lee J, Wang Q, Yao Y, Zhang W, Geisler M, Li K, Huang Y, Chen Y, Kolmakov A, Ma X. 2013. Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis thaliana. Nanotoxicology 7:323-37. doi: 10.3390/nano4020301.

Gorczyca A, Pociecha E, Maciejewska-Prończuk J, Kula-Maximenko M, Oćwieja M. 2022. Phytotoxicity of silver nanoparticles and silver ions toward common wheat. Surf Innov. 10(1):48-58. doi: 10.1680/jsuin.20.00094.

Günthardt BF, Hollender J, Hungerbühler K, Scheringer M, Bucheli TD. 2018. Comprehensive toxic plants–phytotoxins database and its application in assessing aquatic micropollution potential. J Agric Food Chem. 66:7577–7588. doi: 10.1021/acs.jafc.8b01639.

Halder NC, Wagner CNJ. 1966. Separation of particle size and lattice strain in integral breadth measurements Acta. Cryst. 20: 312-313. doi: 10.1107/S0365110X66000628.

Hammann A, Ybanez LM, Isla MI. 2020. Potential agricultural use of a sub-product (olive cake) from olive oil industries composting with soil. J Pharm Pharmacogn Res. 8:43-52. doi: 10.56499/jppres19.632_8.1.43.

Hao DC, He CN, Shen J, Xiao PG. 2017. Anticancer chemodiversity of ranunculaceae medicinal plants: Molecular mechanisms and functions. Curr Genomics 18:39–59. doi: 10.2174/1389202917666160803151752.

Hassan SWM, El-latif HHA. 2018. Characterization and applications of the biosynthesized silver nanoparticles by marine Pseudomonas sp. H64. J Pure Appl Microbiol. 12:1289-1299. doi: 10.22207/JPAM.12.3.31.

He J, Lyu RD, Yao M, Xie L, Yang ZZ. 2019. Clematis mae (Ranunculaceae), a new species of C. sect. Meclatis from Xinjiang, China. PhytoKeys 117:133-142. doi: 10.3897/phytokeys.114.31854.

Heikal Y, Şuţan NA. 2021. Mechanisms of genotoxicity and oxidative stress induced by engineered nanoparticles in plants. In: Khan Z, Ansari MY, Shahwar D (eds) Induced genotoxicity and oxidative stress in plants, Springer, Singapore, p. 151-197.

Hill RL, Wittenburg R, Gourlay AH. 2001. Biology and host range of Phytomyza vitalbae and its establishment for the biological control of Clematis vitalba in New Zealand. Biocontrol Sci Technol. 11:459–473. doi: 10.1080/09583150120067490.

IBM Corp. Released 2011. IBM SPSS Statistics for Windows, Version 20.0. Armonk, NY: IBM Corp.

Jacob JM, John MS, Jacob A, Abitha P, Kumar SS, Rajan R, Natarajan S, Pugazhendhi A. 2019. Bactericidal coating of paper towels via sustainable biosynthesis of silver nanoparticles using Ocimum sanctum leaf extract. Mater Res Express. 6:045401. doi: 10.1088/2053-1591/aafaed.

Kambale EK, Nkanga CI, Mutonkole BPI, Bapolisi AM, Tassa DO, Liesse JM, Krause AWM, Memvanga PB. 2020. Green synthesis of antimicrobial silver nanoparticles using aqueous leaf extracts from three Congolese plant species (Brillantaisia patula, Crossopteryx febrifuga and Senna siamea). Heliyon 6.e04493. doi: 10.1016/j.heliyon.2020.e04493.

Kaur I, Ellis LJ, Romer I, Tantra R, Carriere M, Allard S, Mayne-L’Hermite M, Minelli C, Unger W, Potthoff A, et al. 2017. Dispersion of nanomaterials in aqueous media: Towards protocol optimization. J Vis Exp. 130:e56074. doi: 10.3791/56074.

Kim KW, Lee DG. 2007. Screening of herbicidal and fungicidal activities from resource plants in Korea. Korean J Weed Sci. 27(3):285-295.

Kthiri A, Hamimed S, Othmani A. 2021. Novel static magnetic field effects on green chemistry biosynthesis of silver nanoparticles in Saccharomyces cerevisiae. Sci Rep. 11:20078. doi: 10.1038/s41598-021-99487-3.

Kumar V, Singh DK, Mohan S, Hasan SH. 2016. Photo-induced biosynthesis of silver nanoparticles using aqueous extract of Erigeron bonariensis and its catalytic activity against acridine orange. J Photochem Photobiol B: Biol. 155:39-50. doi: 10.1016/j.jphotobiol.2015.12.011.

Lalsangpuii F, Rokhum SL, Nghakliana F, Fakawmi L, Ruatpuia JVL, Laltlanmawii E, Lalfakzuala R, Siama Z. 2022. Green Synthesis of Silver Nanoparticles Using Spilanthes acmella Leaf Extract and its Antioxidant-Mediated Ameliorative Activity against Doxorubicin-Induced Toxicity in Dalton’s Lymphoma Ascites (DLA)-Bearing Mice. ACS Omega.7(48):44346-44359. doi: 10.1021/acsomega.2c05970.

Lang I, Sassmann S, Schmidt B, Komis G. 2014. Plasmolysis: Loss of turgor and beyond. Plants 3:583-59. doi: 10.3390/plants3040583.

Łaska G, Maciejewska-Turska M, Sieniawska E, Świątek Ł, Pasco DS, Balachandran P., 2021. Extracts from Pulsatilla patens target cancer-related signaling pathways in HeLa cells. Sci Rep. 11(1):10654. doi: 10.1038/s41598-021-90136-3.

Lewis SN, Balick MJ. 2020. Handbook of poisonous and injurious plants. New York Botanical Garden, Spinger, New York, U.S.A

Marichal L, Klein G, Armengaud J. 2020. Protein corona composition of silica nanoparticles in complex media: Nanoparticle size does not matter. Nanomaterials 10:240. doi: 10.3390/nano10020240.

Martínez-Castañón GA, Niño-Martínez N, Martínez-Gutierrez F. 2008. Synthesis and antibacterial activity of silver nanoparticles with different sizes. J Nanopart Res. 10:1343–1348. doi: 10.1007/s11051-008-9428-6.

Monopoli MP, Aberg C, Salvati A, Dawson KA. 2012. Biomolecular coronas provide the biological identity of nanosized materials. Nat Nanotechnol. 7:779-786. doi: 10.1038/nnano.2012.207.

Muala WCB, Desobgp ZSC, Jong NE. 2021. Optimization of extraction conditions of phenolic compounds from Cymbopogon citratus and evaluation of phenolics and aroma profiles of extract. Heliyon 7:e06744. doi: 10.1016/j.heliyon.2021.e06744.

Naz I, Ramchandani S, Khan MR, Yang MH, Ahn KS. 2020. Anticancer potential of raddeanin A, a natural triterpenoid isolated from Anemone raddeana Regel. Molecules 25:1035. doi: 10.3390/molecules25051035.

Nefic H, Musanovic J, Metovic A, Kurteshi K. 2013. Chromosomal and nuclear alterations in root tip cells of Allium cepa L. induced by alprazolam. Med Arch 67(6):388–392. doi: 10.5455/medarh.2013.67.388-392.

O’Halloran W. 2019. Management of Clematis vitalba at ‘Suez Pond’. Assessment of monitoring and control using manual methods. Wild Eork, SECAD. Accessed 3.10. 2023.

Ogle CC, Cock GD, Arnold G, Mickleson N. 2000. Impact of an exotic vine Clematis vitalba (F. Ranunculaceae) and of control measures on plant biodiversity in indigenous forest, Taihape, New Zealand. Austral Ecol. 25:539-551. doi: 10.1046/j.1442-9993.2000.01076.x.

Panda KK, Achary VMM, Krishnaveni R, Padhi BK, Sarangi SN, Sahu SN, Panda BB. 2011. In vitro biosynthesis and genotoxicity bioassay of silver nanoparticles using plants. Toxicol In Vitro 25:1097–1105. doi: 10.1016/j.tiv.2011.03.008.

Piloni A, Wong CK, Chen F, Lord M, Walther A, Stenzel MH. 2019. Surface roughness influences the protein corona formation of glycosylated nanoparticles and alter their cellular uptake. Nanoscale 11:23259–23267. doi: 10.1039/C9NR06835J.

Prajitha V, Thoppil JE. 2017. Cytotoxic and apoptotic activities of extract of Amaranthus spinosus L. in Allium cepa and human erythrocytes. Cytotechnology 69:123-133. doi: 10.1007/s10616-016-0044-5.

Prakash P, Gnanaprakasam P, Emmanuel R, Arokiyaraj S, Saravanan M. 2013. Green synthesis of silver nanoparticles from leaf extract of Mimusops elengi Linn. for enhanced antibacterial activity against multi drug resistant clinical isolates. Colloids Surf B 108:255–259. doi: 10.1016/j.colsurfb.2013.03.017.

Pramanik S, Chatterjee S, Saha A, Devi PS, Kumar GS, 2016. Unraveling the Interaction of Silver Nanoparticles with Mammalian and Bacterial DNA. J Phys Chem B 120(24):5313–5324. doi: 10.1021/acs.jpcb.6b01586.

Rasband WS. 1997-2018. ImageJ, U.S. National Institutes of Health, Bethesda, Maryland, USA,

Rasmussen CG, Wright AJ, Müller S. 2013. The role of the cytoskeleton and associated proteins in determination of the plant cell division plane. Plant J. 75:258-269. doi: 10.1111/tpj.12177.

Reddy NV, Li H, Hou T. 2021. Phytosynthesis of silver nanoparticles using Perilla frutescens leaf extract: Characterization and evaluation of antibacterial, antioxidant, and anticancer activities. Int J Nanomed. 16:15-29. doi: 10.2147/IJN.S265003.

Redmond CM, Stout JC. 2018. Breeding system and pollination ecology of a potentially invasive alien Clematis vitalba L. in Ireland. J Plant Ecol. 11:56-63. doi: 10.1093/jpe/rtw137.

Riaz Ahmed KB, Nagy AM, Brown RP, Zhang Q, Malghan SG, Goering PL. 2017. Silver nanoparticles: Significance of physicochemical properties and assay interference on the interpretation of in vitro cytotoxicity studies. Toxicol In Vitro 38:179–192. doi: 10.1016/j.tiv.2016.10.012.

Roy B, Krishnan SP, Chandrasekaran N, Mukherjee A. 2019. Toxic effects of engineered nanoparticles (metal/metal oxides) on plants using Allium cepa as a model system. Compr Anal Chem. 84:125-143. doi: 10.1016/bs.coac.2019.04.009.

Roy P, Das B, Mohanty A, Mohapatra S. 2017. Green synthesis of silver nanoparticles using Azadirachta indica leaf extract and its antimicrobial study. Appl Nanosci. 7:843–850. doi: 1007/s13204-017-0621-8.

RuttkayNedecky B, Krystofova O, Nejdl L, Adam V. 2017. Nanoparticles based on essential metals and their phytotoxicity. J Nanobiotechnol. 15:33. doi: 10.1186/s12951-017-0268-3.

Segneanu A-E, Grozescu I, Cziple F, Berki D, Damian D, Niculite CM, Florea A, Leabu M. 2015. Helleborus purpurascens - Amino acid and peptide analysis linked to the chemical and antiproliferative properties of the extracted compounds. Molecules 20:22170–2218. doi: 10.3390/molecules201219819.

Shende S, Rajput VD, Gade A, Minkina T, Fedorov Y, Sushkova S, Mandzhieva S, Burachevskaya M, Boldyreva V. 2022. Metal-Based Green Synthesized Nanoparticles: Boon for Sustainable Agriculture and Food Security. IEEE T Nanobiosci., 21(1):44-54. doi: 10.1109/TNB.2021.3089773.

Sutan AN, Vilcoci DS, Fierascu I, Neblea AM, Sutan C, Ducu C, Soare LC, Negrea D, Avramescu SM, Fierascu RC. 2019. Influence of the phytosynthesis of noble metal nanoparticles on the cytotoxic and genotoxic effects of Aconitum toxicum Reichenb. leaves alcoholic extract. J Clust Sci. 30:647-660. doi: 10.1007/s10876-019-01524-9.

Şuţan NA, Matei AN, Oprea E, Tecuceanu V, Tătaru LD, Moga SG, Manolescu DS, Topală CM. 2020. Chemical composition, antioxidant and cytogenotoxic effects of Ligularia sibirica (L.) Cass. roots and rhizomes extracts. Caryologia 73:83-92. doi: 10.13128/caryologia-116.

Şuţan NA, Fierăscu I, Fierăscu RC, Manolescu DS, Soare CL. 2016. Comparative analytical characterization and in vitro cytogenotoxic activity evaluation of Asplenium scolopendrium L. leaves and rhizome extracts prior to and after Ag nanoparticles phytosynthesis. Ind Crops Prod. 83:379-386. doi: 10.1016/j.indcrop.2016.01.011.

Şuţan NA, Fierascu I, Şuţan C, Soare LC, Neblea AM, Somoghi R., Fierăscu RC. 2021. In vitro mitodepressive activity of phytofabricated silver oxide nanoparticles (Ag2O-NPs) by leaves extract of Helleborus odorus Waldst. & Kit. ex Willd. Mater Lett. 286:129194. doi: 10.1016/j.matlet.2020.129194.

Taurozzi JS, Hackley VA, Wiesner MR. 2011. Ultrasonic dispersion of nanoparticles for environmental, health and safety assessment--issues and recommendations. Nanotoxicology 5:711-729. doi: 10.3109/17435390.2010.528846.

Towill LE, Mazur P. 1975. Studies on reduction of 2,3,5-triphenyltetrazolium chloride as a viability assay for plant tissue cultures. Can J Bot Revue Can Bot. 53:1097–1102.

Tyagi PK, Tyagi S, Gola D, Arya A, Ayatollahi A, Alshehri MM, Sharifi-Rad J. 2021. Ascorbic acid and polyphenols mediated green synthesis of silver nanoparticles from Tagetes erecta L. aqueous leaf extract and studied their antioxidant properties. J Nanomater. 6515419. doi: 10.1155/2021/6515419.

Valencia-Avilés E, García-Pérez ME, Garnica-Romo MG, Figueroa-Cárdenas JDD, Meléndez-Herrera E, Salgado-Garciglia R, Martínez-Flores HE. 2018. Antioxidant properties of polyphenolic extracts from Quercus laurina, Quercus crassifolia, and Quercus scytophylla Bark. Antioxidants 7:81. doi:10.3390/antiox7070081.

Valster AH, Hepler PK. 1997. Caffeine inhibition of cytokinesis: effect on the phragmoplast cytoskeleton in living Tradescantia stamen hair cells. Protoplasma 196:155–166. doi: 10.1007/BF01279564 .

Vijayaraghavareddy P, Adhinarayanreddy V, Vemanna RS, Sreeman S, Makarla U. 2017. Quantification of membrane damage/cell death using Evan’s blue staining technique. Bio Protoc. 7:1-8. doi: 10.21769/BioProtoc.2519.

Weng-Tsai W. 2003. A revision of Clematis sect. Clematis (Ranunculaceae). J Syst Evol 41:1-62

Wieczerzak M, Namieśnik J, Kudłak B (2016) Bioassays as one of the green chemistry tools for assessing environmental quality: A review. Environ Int. 94:341-361. doi: 10.1016/j.envint.2016.05.017.

Wink M. 2010. Mode of action and toxicology of plant toxins and poisonous plants. Julius Kühn Archiv. 93-112.

Woudenberg JH, Aveskamp MM, de Gruyter J, Spiers AG, Crous PW. 2009. Multiple Didymella teleomorphs are linked to the Phoma clematidina morphotype. Persoonia 22:56–62. doi: 10.3767/003158509X427808.

Wypij M, Jędrzejewski T, Trzcińska-Wencel J, Ostrowski M, Rai M, Golińska P. 2021. Green synthesized silver nanoparticles: Antibacterial and anticancer activities, biocompatibility, and analyses of surface-attached proteins. Front Microbiol. 12:632505. doi: 10.3389/fmicb.2021.632505.

Yan A, Chen Z. 2019. Impacts of silver nanoparticles on plants: A focus on the phytotoxicity and underlying mechanism. Int J Mol Sci. 20:1003. doi: 10.3390/ijms20051003.




How to Cite

Sutan, N. A., Popescu (Stegarus), D. I., Drăghiceanu, O. A., Topală, C., Şuţan, C., Negrea, A. D., Vîlcoci, D. Ştefania, Cîrstea, G., Moga, S. G., & Soare, L. C. (2023). In vitro cytotoxic activity of phytosynthesized silver nanoparticles using Clematis vitalba L. (Ranunculaceae) aqueous decoction. Caryologia, 76(2), 67–81.




Most read articles by the same author(s)