Vol. 6 No. 1 (2022)
Historical Articles

Lipids, Chloroform, and Their Intertwined Histories

Carlos Ramírez
Department of Chemical Engineering, University of Puerto Rico, Puerto Rico
Bio

Published 2022-03-07

Keywords

  • lipids,
  • fatty acids,
  • cell membrane structure and function,
  • chloroform synthesis and uses,
  • lipid-based brain tissue components

How to Cite

Ramírez, C. (2022). Lipids, Chloroform, and Their Intertwined Histories. Substantia, 6(1), 133–143. https://doi.org/10.36253/Substantia-1498

Abstract

Lipids and their fatty acid constituents, in particular, have been the subject of academic and industrial research initiatives since their isolation by Michel-Eugène Chevreul in 1813.  Fatty acids can be saturated or unsaturated, their physical properties depending on the aliphatic chain length and degree of saturation.  They constitute the building blocks of many lipid groups, such as triglycerides and phospholipids; are key additives in commercial foods, pharmaceuticals, and cosmetics; and can cross cell membranes.  Chloroform was synthesized in 1831 by Samuel Guthrie and has had a tortuous history of interactions with mankind:  from an anesthetic in obstetrics, dentistry, and surgery, to being labeled as a potential carcinogen in the 1970s.  It has also had important nonmedical applications, such as in chemical engineering mass transfer systems designed to estimate binary gas diffusion coefficients.  Although chemically dissimilar, lipids and chloroform intertwined their scientific paths through the work of Jordi Folch and associates in the 1940s-1950s, in which many lipid-based brain molecules were isolated and characterized.  This article outlines the separate histories of lipids and chloroform, and those research initiatives in which they have acted synergistically.  The narrative covers the interplay of chemical compounds with different historical backgrounds, but with physical properties which continue to foster their modern-day interaction.

References

  1. A. L. Lehninger, Biochemistry: The Molecular Basis of Cell Structure and Function, 2nd ed., Worth Publishers, Inc., New York City, NY, 1978.
  2. M. Chevreul, Annales de chimie, ou Recueil de mémoires concernant la chimie et les arts qui en dépendent, et spécialement la pharmacie 1813, 88, 225-261. https://gallica.bnf.fr/ark:/12148/bpt6k65741176/f225.item.
  3. D. Bassolino-Klimas, H. E. Alper, T. R. Stouch, Biochemistry 1993, 32, 12624-12637. DOI: 10.1021/bi00210a010.
  4. D. Zakim, Proc. Soc. Exp. Biol. Med. 1996, 212, 5-14. DOI: 10.3181/00379727-212-43986.
  5. J. A. Hamilton, J. Lipid Res. 1998, 39, 467-481. https://www.jlr.org/content/39/3/467.full.pdf+html.
  6. J. A. Hamilton, Prostaglandins, Leukotrienes Essent. Fatty Acids 1999, 60, 291-297. DOI: 10.1016/S0952-3278(99)80002-7.
  7. J. A. Hamilton, F. Kamp, Diabetes 1999, 48, 2255-2269. DOI: 10.2337/diabetes.48.12.2255.
  8. E. Barta, S. Sideman, J. B. Bassingthwaighte, Ann. Biomed. Eng. 2000, 28, 331-345. DOI: 10.1114/1.274.
  9. P. K. Fyfe, K. E. McAuley, A. W. Roszak, N. W. Isaacs, R. J. Cogdell, M. R. Jones, Trends Biochem. Sci. 2001, 26, 106-112. DOI: 10.1016/S0968-0004(00)01746-1.
  10. E. Gouaux, S. H. White, Curr. Opin. Struct. Biol. 2001, 11, 393-396. DOI: 10.1016/s0959-440x(00)00222-0.
  11. J. A. Hamilton, R. A. Johnson, B. Corkey, F. Kamp, J. Mol. Neurosci. 2001, 16, 99-108. DOI: 10.1385/JMN:16:2-3:99.
  12. T. Hajri, N. A. Abumrad, Annu. Rev. Nutr. 2002, 22, 383-415. DOI: 10.1146/annurev.nutr.22.020402.130846.
  13. A. W. Ralston, Fatty Acids and Their Derivatives, John Wiley & Sons, Inc., New York City, NY, 1948.
  14. H. S. Harned, R. W. Ehlers, J. Am. Chem. Soc. 1932, 54, 1350-1357. DOI: 10.1021/ja01343a013.
  15. H. S. Harned, R. W. Ehlers, J. Am. Chem. Soc. 1933, 55, 652-656. DOI: 10.1021/ja01329a027.
  16. H. S. Harned, R. W. Ehlers, J. Am. Chem. Soc. 1933, 55, 2379-2383. DOI: 10.1021/ja01333a024.
  17. J. F. J. Dippy, J. Chem. Soc. 1938, paper 231, 1222-1227. DOI: 10.1039/JR9380001222.
  18. C. W. Hoerr, W. O. Pool, A. W. Ralston, Oil Soap 1942, 19, 126-128. DOI: 10.1007/BF02545490.
  19. A. W. Ralston, C. W. Hoerr, J. Org. Chem. 1942, 7, 546-555. DOI: 10.1021/jo01200a013.
  20. C. W. Hoerr, A. W. Ralston, J. Org. Chem. 1944, 9, 329-337. DOI: 10.1021/jo01186a005.
  21. C. W. Hoerr, R. S. Sedgwick, A. W. Ralston, J. Org. Chem. 1946, 11, 603-609. DOI: 10.1021/jo01175a025.
  22. L. M. John, J. W. McBain, J. Am. Oil Chem. Soc. 1948, 25, 40–41. DOI: 10.1007/BF02593186.
  23. D. N. Eggenberger, F. K. Broome, A. W. Ralston, H. J. Harwood, J. Org. Chem. 1949, 14, 1108-1110. DOI: 10.1021/jo01158a022.
  24. M. B. Oliveira, M. J. Pratas, I. M. Marrucho, A. J. Queimada, J. A. P. Coutinho, AIChE J. 2009, 55, 1604-1613. DOI: 10.1002/aic.11766.
  25. C. M. Romero, F. Suárez, J. Solution Chem. 2009, 38, 315-320. DOI: 10.1007/s10953-009-9375-6.
  26. D. S. Goodman, J. Am. Chem. Soc. 1958, 80, 3887-3892. DOI: 10.1021/ja01548a023.
  27. R. B. Simpson, J. D. Ashbrook, E. C. Santos, A. A. Spector, J. Lipid Res. 1974, 15, 415-422. https://www.jlr.org/content/15/4/415.full.pdf+html.
  28. F. H. Mattson, R. A. Volpenhein, J. Am. Oil Chem. Soc. 1966, 43, 286-289. DOI: 10.1007/BF02609675.
  29. S. Rossignol, L. Tinel, A. Bianco, M. Passananti, M. Brigante, D. J. Donaldson, C. George, Science 2016, 353, 699-702. DOI: 10.1126/science.aaf3617.
  30. Y. Sato, G. T. Barry, L. C. Craig, J. Biol. Chem. 1947, 170, 501-507. https://www.jbc.org/content/170/2/501.citation.
  31. B. Williamson, L. C. Craig, J. Biol. Chem. 1947, 168, 687-697. http://www.jbc.org/content/168/2/687.citation.
  32. L. C. Craig, O. Post, Anal. Chem. 1949, 21, 500-504. DOI: 10.1021/ac60028a013.
  33. G. T. Barry, Y. Sato, L. C. Craig, J. Biol. Chem. 1951, 188, 299-306. https://www.jbc.org/content/188/1/299.citation.
  34. E. H. Ahrens Jr., L. C. Craig, J. Biol. Chem. 1952, 195, 299-310. https://www.jbc.org/content/195/1/299.citation.
  35. S. J. Singer, G. L. Nicolson, Science 1972, 175, 720-731. DOI: 10.1126/science.175.4023.720.
  36. J. N. Israelachvili, Biochim. Biophys. Acta, Biomembr. 1977, 469, 221-225. DOI: 10.1016/0005-2736(77)90185-7.
  37. O. G. Mouritsen, M. Bloom, Biophys. J. 1984, 46, 141-153. DOI: 10.1016/S0006-3495(84)84007-2.
  38. S. J. Singer, J. Membr. Biol. 1992, 129, 3-12. DOI: 10.1007/BF00232051.
  39. G. M. Lee, F. Zhang, A. Ishihara, C. L. McNeil, K. A. Jacobson, J. Cell Biol. 1993, 120, 25-35. DOI: 10.1083/jcb.120.1.25.
  40. K. Jacobson, E. D. Sheets, R. Simson, Science 1995, 268, 1441-1442. DOI: 10.1126/science.7770769.
  41. K. Simons, E. Ikonen, Nature 1997, 387, 569-572. DOI: 10.1038/42408.
  42. M. Edidin, Nat. Rev. Mol. Cell Biol. 2003, 4, 414-418. DOI: 10.1038/nrm1102.
  43. D. M. Engelman, Nature 2005, 438, 578-580. DOI: 10.1038/nature04394.
  44. K. Ritchie, J. Spector, Biopolymers 2007, 87, 95-101. DOI: 10.1002/bip.20801.
  45. D. Lingwood, K. Simons, Science 2010, 327, 46-50. DOI: 10.1126/science.1174621.
  46. F. M. Goñi, Biochim. Biophys. Acta, Biomembr. 2014, 1838, 1467-1476. DOI: 10.1016/j.bbamem.2014.01.006.
  47. G. L. Nicolson, Biochim. Biophys. Acta, Biomembr. 2014, 1838, 1451-1466. DOI: 10.1016/j.bbamem.2013.10.019.
  48. D. Marquardt, B. Geier, G. Pabst, Membranes 2015, 5, 180-196. DOI: 10.3390/membranes5020180.
  49. J. R. Pawling, Dr. Samuel Guthrie: Discoverer of Chloroform, Manufacturer of Percussion Pellets, Industrial Chemist (1782-1848), Brewster Press, Watertown, NY, 1947.
  50. L. Stratmann, Chloroform: The Quest for Oblivion, Sutton Publishing Limited, Stroud, Gloucestershire, England, 2003.
  51. A. Christie, Why Didn’t They Ask Evans? Bantam Books, Inc., New York City, NY, 1983.
  52. A. Christie, Hercule Poirot’s Casebook, Dodd, Mead & Company, Inc., New York City, NY, 1984, pp. 716-727.
  53. S. D. Fine, Fed. Regist. 1976, 41, 26841-26846. https://archive.org/details/sim_federal-register-find_1976-06-29_41_126_3/mode/2up.
  54. S. Guthrie, Am. J. Sci. Arts 1832, 21, 64-65. https://www.biodiversitylibrary.org/item/88794#page/76/mode/1up.
  55. O. P. Hubbard, Trans. N. Y. Acad. Sci. 1892, 11, 149-151. https://www.biodiversitylibrary.org/item/45322#page/183/mode/1up.
  56. T. K. Sherwood, R. L. Pigford, C. R. Wilke, Mass Transfer, McGraw-Hill, Inc., New York City, NY, 1975.
  57. R. E. Treybal, Mass-Transfer Operations, 3rd ed. (McGraw-Hill Classic Textbook Reissue), McGraw-Hill Book Company, Inc., New York City, NY, 1987.
  58. R. B. Bird, W. E. Stewart, E. N. Lightfoot, Transport Phenomena, revised 2nd ed., John Wiley & Sons, Inc., New York City, NY, 2007.
  59. E. L. Cussler, Multicomponent Diffusion, Chapter 7 in Diffusion: Mass Transfer in Fluid Systems, 3rd ed., Cambridge University Press, Cambridge, England, 2009, pp. 211-234.
  60. J. Stefan, Sitzungsberichte der Mathematisch-Naturwissenschaftlichen Classe der Kaiserlichen Akademie der Wissenschaften Wien 1871, 63, 63-124. https://www.zobodat.at/pdf/SBAWW_63_2_0063-0124.pdf.
  61. J. Stefan, Ann. Phys. 1890, 277, 725-747. DOI: 10.1002/andp.18902771206.
  62. G. Baumgartner, Sitzungsberichte der Mathematisch-Naturwissenschaftlichen Classe der Kaiserlichen Akademie der Wissenschaften Wien 1877, 75, 313-319. http://books.google.com.
  63. A. N. Berezhnoi, A. V. Semenov, Binary Diffusion Coefficients of Liquid Vapors in Gases, K. Shakhlevich, Russian-to-English translator, Begell House, Inc., New York City, NY, 1997.
  64. T. R. Marrero, E. A. Mason, J. Phys. Chem. Ref. Data 1972, 1, 3-118. DOI: 10.1063/1.3253094.
  65. T. R. Marrero, E. A. Mason, AIChE J. 1973, 19, 498-503. DOI: 10.1002/aic.690190312.
  66. M. J. Tang, R. A. Cox, M. Kalberer, Atmos. Chem. Phys. 2014, 14, 9233–9247. DOI: 10.5194/acp-14-9233-2014.
  67. M. J. Tang, M. Shiraiwa, U. Pöschl, R. A. Cox, M. Kalberer, Atmos. Chem. Phys. 2015, 15, 5585-5598. DOI: 10.5194/acp-15-5585-2015.
  68. J. L. Medina, C. A. Ramírez, Chem. Eng. Commun. 2016, 203, 1625-1640. DOI: 10.1080/00986445.2016.1223059.
  69. M. E. Graniela, C. A. Ramírez, Chem. Eng. Commun. 2019, 206, 842-860. DOI: 10.1080/00986445.2018.1530992.
  70. M. Jaime, S. G. Maisonet, C. A. Ramírez, Chem. Eng. Commun. 2020, 207, 1658-1684. DOI: 10.1080/00986445.2019.1674815.
  71. I. Moreno, M. Moreno, C. A. Ramírez, Chem. Eng. Commun. 2022. DOI: 10.1080/00986445.2020.1852400.
  72. M. Moreno, I. Moreno, M. Jaime, S. G. Maisonet, C. A. Ramírez, Chem. Eng. Commun. 2021, 208, 1219-1237. DOI: 10.1080/00986445.2020.1770233.
  73. J. Folch, M. Lees, G. H. Sloane Stanley, J. Biol. Chem. 1957, 226, 497-509. https://www.jbc.org/content/226/1/497.citation.
  74. J. Folch, J. Biol. Chem. 1942, 146, 35-44. http://www.jbc.org/content/146/1/35.citation.
  75. J. Folch, J. Biol. Chem. 1948, 174, 439-450. http://www.jbc.org/content/174/2/439.citation.
  76. J. Folch, J. Biol. Chem. 1949, 177, 497-504. http://www.jbc.org/content/177/2/497.citation.
  77. J. Folch, J. Biol. Chem. 1949, 177, 505-519. http://www.jbc.org/content/177/2/505.citation.
  78. J. Folch, S. Arsove, J. A. Meath, J. Biol. Chem. 1951, 191, 819-831. http://www.jbc.org/content/191/2/819.citation.
  79. J. Folch, I. Ascoli, M. Lees, J. A. Meath, F. N. LeBaron, J. Biol. Chem. 1951, 191, 833-841. http://www.jbc.org/content/191/2/833.citation.
  80. J. Folch, M. Lees, J. Biol. Chem. 1951, 191, 807-817. https://www.jbc.org/content/191/2/807.citation.
  81. E. G. Bligh, W. J. Dyer, Can. J. Biochem. Physiol. 1959, 37, 911-917. DOI: 10.1139/o59-099.
  82. F. Smedes, T. K. Thomasen, Mar. Pollut. Bull. 1996, 32, 681-688. DOI: 10.1016/0025-326X(96)00079-3.
  83. L. A. Carlson, J. Atheroscler. Res. 1963, 3, 334-336. DOI: 10.1016/S0368-1319(63)80012-5.
  84. L. A. Carlson, Clin. Chim. Acta 1985, 149, 89-93. DOI: 10.1016/0009-8981(85)90277-3.
  85. P. Schmid, E. Hunter, Physiol. Chem. Phys. 1971, 3, 98-102.
  86. J. de Boer, Chemosphere 1988, 17, 1803-1810. DOI: 10.1016/0045-6535(88)90108-7.
  87. F. Smedes, Analyst 1999, 124, 1711-1718. DOI: 10.1039/A905904K.
  88. P. Manirakiza, A. Covaci, P. Schepens, J. Food Compos. Anal. 2001, 14, 93-100. DOI: 10.1006/jfca.2000.0972.
  89. K. G. Drouillard, H. Hagen, G. D. Haffner, Chemosphere 2004, 55, 395-400. DOI: 10.1016/j.chemosphere.2003.11.010.
  90. N. El Jaber-Vazdekis, F. Gutiérrez-Nicolás, Á. G. Ravelo, R. Zárate, Phytochem. Anal. 2006, 17, 107-113. DOI: 10.1002/pca.893.
  91. E. Cequier-Sánchez, C. Rodríguez, Á. G. Ravelo, R. Zárate, J. Agric. Food Chem. 2008, 56, 4297-4303. DOI: 10.1021/jf073471e.