Vol. 7 No. 2 (2023)
Research Articles

A Role for Bose-Einstein Condensation in Astrophysics

Barry W. Ninham
Department of Materials Physics, Research School of Physics, Australian National University, Canberra, Australia
Bio
Iver Brevik
Department of Energy and Process Engineering, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
Bio
Oleksandr I. Malyi
Centre of Excellence ENSEMBLE3 Sp. z o. o., Wolczynska Str. 133, 01-919, Warsaw, Poland
Bio
Mathias Boström
Centre of Excellence ENSEMBLE3 Sp. z o. o., Wolczynska Str. 133, 01-919, Warsaw, Poland
Bio

Published 2023-06-05

Keywords

  • Bose-Einstein condensate,
  • Charged Bose gas,
  • Astrophysical Chemistry

How to Cite

Ninham, B. W., Brevik, I., Malyi, O. I., & Boström, M. (2023). A Role for Bose-Einstein Condensation in Astrophysics. Substantia, 7(2), 35–39. https://doi.org/10.36253/Substantia-2091

Abstract

We revive a 60-year-old idea that might explain a remarkable new observation of a periodic low-frequency radio emission from a source at galactic distances (GLEAM-X J162759.5-523504.3). It derives from the observation that a high-density high-temperature charged boson plasma is a superconducting superfluid with a Meissner effect.

References

  1. B. W. Ninham, “Charged Bose gas in astrophysics”, Phys. Lett. 4, 278 (1963).
  2. C. Gruber and A. Pelster, “A theory of finite-temperature Bose-Einstein condensates in neutron stars”, Eur. Phys. J. D 68, 341 (2014).
  3. N. Hurley-Walker, X. Zhang, A. Bahramian, S. J. McSweeney, T. N. O’Doherty, P. J. Hancock, J. Morgan, G. E. Anderson, G. H. Heald, and T. J. Galvin, ”A radio transient with unusually slow period emission” Nature 601, 526 (2022).
  4. M. Kramer, B. W. Stappers, A. Jessner, A. G. Lyne and C. A. Jordan, “Polarized radio emission from a magnetar”, Mon. Not. R. Astron. Soc. 377, 107–119 (2007).
  5. L. M. Capparelli, A. Damiano, L. Maiani, A. D. Polosa, “A note on polarized light from magnetars”, Eur. Phys. J. C 77, 754 (2017).
  6. S. Dai, M. E. Lower, M. Bailes, F. Camilo, J. P. Halpern, S. Johnston, M. Kerr, J. Reynolds, J. Sarkissian, and P. Scholz, “Wideband Polarized Radio Emission from the Newly Revived Magnetar XTE J1810–197”, ApJL 874 L14 (2019).
  7. T. Hashimoto, Y. Ota, A. Tsuzuki, T. Nagashima, A. Fukushima, S. Kasahara, Y. Matsuda, K. Matsuura, Y. Mizukami, T. Shibauchi, S. Shin, K. Okazaki, “Bose-Einstein condensation superconductivity induced by disappearance of the nematic state”, Sci. Adv. 6 : eabb90 (2020).
  8. M. R. Schafroth, ”Superconductivity of a charged ideal Bose gas”, Phys. Rev. 100, 463 (1955).
  9. J. M. Blatt, ”Persistent ring currents in an ideal Bose gas”, Prog. Theor. Phys. 26, 761 (1961).
  10. M.R. Schafroth, S.T. Butler, and J.M. Blatt, “Quasichemical equilibrium approach to superconductivity”, Helv. Phys. Acta 30, 93 (1957) .
  11. R. Friedberg., T. D. Lee, and H. C. Ren, ”A correction to Schafroth's superconductivity solution of an ideal charged Boson system”, Ann. Phys. 208, 149-215 (1991).
  12. B. W. Ninham, ”Charged Bose gas”, Nucl. Phys. 53, 685-692 (1964).
  13. L. L. Foldy, ”Charged Boson gas”, Phys. Rev. 124, 649 (1961).
  14. J. Bardeen, "Theory of the Meissner Effect in Superconductors", Phys. Rev.97 (6): 1724–1725 (1955).
  15. L. Cooper, “Bound electron pairs in degenerate Fermi gas”. Phys. Rev. 104 (4): 1189–1190 (1956).
  16. J. Bardeen, L.N. Cooper, and J.R. Schrieffer, “Theory of Superconductivity”, Phys. Rev. 108, 1175 (1957).
  17. N. N. Bogoliubov, "On a new method in the theory of superconductivity", Il Nuovo Cimento. 7 (6), 794–805 (1958).
  18. V. Trimble, “The origin and abundances of the chemical elements revisited”, The Astron. Astrophys. Rev. 3, 1-46 (1991).
  19. G. Burbridge and F. Hoyle, “The origin of helium and other light elements”, Astrophys. J., 509, L1-L3 (1998).
  20. F. Hoyle and W. A. Fowler, “Nucleosynthesis in supernovae”, Astrophys. J. 132, 565-590 (1960).
  21. K. M. Burbridge, G. R. Burbridge, W. A. Fowler, and F. Hoyle, “Synthesis of the elements in stars”, Rev. Mod. Phys. 29, 547-650 (1957).
  22. P. J. Woods and C. N. Davids, “Nuclei beyond the proton drip-line”, Annual Rev. of Nuclear and Particle Science 47, 541-590 (1997).
  23. O. K. Manuel, B. W. Ninham and S. E. Friberg, “Superfluidity in the Solar Interior: Implications for Solar Eruptions and Climate”, Journal of Fusion Energy, (2003), 21 (3/4), 193- 198.
  24. O.K. Manuel ,C. Bolon and P. Jangam, “Nuclear systematics: II. The cradle of the nuclides”, Journal of Radioanalytical and Nuclear Chemistry 251, 417–422 (2002).
  25. A. Mann, ”The strange hearts of neutron stars”, Nature 579, 20-22 (2020).