Very High Efficiency of Pathogen Inactivation by Body Temperature CO2 Bubbles: in Pursuit of Mechanism
Published 2021-03-22
Keywords
- E. Coli,
- Water Reuse,
- Carbon Dioxide,
- Combustion Gas,
- Alkalinity
How to Cite
Copyright (c) 2020 Adrian Garrido Sanchis, Barry W. Ninham
This work is licensed under a Creative Commons Attribution 4.0 International License.
Abstract
A CO2 bubble column (CBC) has been developed as a body-temperature lab-scale water sterilization process for the inactivation of pathogens. Both CO2 and combustion gas bubbles inactivated Escherichia coli C-3000 (ATCC15597) with extraordinary efficiency in solutions with low alkalinity. The mechanisms of inactivation were not known. To characterise the phenomena a new first-order kinetic equation that correlates E.coli inactivation rates with a total alkalinity of the solutions has been developed as a first step towards understanding. This leads us to propose a new mechanism of inactivation.
References
- WHO, Technical guidance on water-related disease surveillance 2011, World Health Organization.
- F. Rusling, Environmental Electrochemistry: Fundamentals and Applications in Pollution Abatement By Krishnan Rajeshwar (University of Texas at Arlington) and Jorge G. Ibanez (Universidad IberoAmericana). Academic Press: San Diego. 1996. $95.00. xvi + 776 pp. ISBN 0-12-576260-7, J Am Chem Soc, 1998, 120(45), 11837-11837.
- G.F.a.M.O. Balaban, Introduction to Dense Phase Carbon Dioxide Technology, in Dense Phase Carbon Dioxide, B.P. Professional, Editor. 2012. p. 1-4.
- A. Garrido Sanchis, R. Pashley, B.W. Ninham, Virus and bacteria inactivation by CO2 bubbles in solution, npj Clean Water, 2019, 2(1), 5.
- B.P. Reines, B.W. Ninham, Structure and function of the endothelial surface layer: unraveling the nanoarchitecture of biological surfaces, Quarterly reviews of biophysics, 2019, 52, e13.
- A. El-Betany, E. Behiry, M. Gumbleton, K. Harding, Humidified Warmed CO2 Treatment Therapy Strategies Can Save Lives with Mitigation and Suppression of SARS-CoV-2 Infection: An Evidence Review. 2020.
- G.W. VanLoon, S.J. Duffy, Environmental chemistry : a global perspective, 2005.
- C. Baird, M. Cann, Environmental chemistry. 2012, New York, NY: W.H. Freeman and Company.
- G. Reshes, S. Vanounou, I. Fishov, M. Feingold, Cell shape dynamics in Escherichia coli, Biophys J, 2008, 94(1), 251-264.
- R.A. Welch, The Genus Escherichia, in The Prokaryotes: Volume 6: Proteobacteria: Gamma Subclass, M. Dworkin, et al., Editors. 2006, Springer New York: New York, NY. p. 60-71.
- ATCC, Product Sheet Escherichia coli (ATCC 15597), ATCC, Editor. 2015.
- X. Yang, Introduction, in A Study on Antimicrobial Effects of Nanosilver for Drinking Water Disinfection. 2017, Springer Singapore: Singapore. p. 1-12.
- I. Gaska, O. Bilenko, S. Smetona, Y. Bilenko, R. Gaska, M. Shur, Deep UV LEDs for Public Health Applications, Int J High Speed Electron, 2014, 23(03n04), 1450018.
- A.T. Spinks, R.H. Dunstan, T. Harrison, P. Coombes, G. Kuczera, Thermal inactivation of water-borne pathogenic and indicator bacteria at sub-boiling temperatures, Water Res, 2006, 40(6), 1326-1332.
- McGuigan, Joyce, Conroy, Gillespie, M. Elmore, Solar disinfection of drinking water contained in transparent plastic bottles : characterizing the bacterial inactivation process, J Appl Microbiol, 1998, 84(6), 1138-1148.
- I. 10705-1, Water quality - Detection and enumeration of bacteriphages- Part 1, in ISO 10705-1. 1995, International Organization for Standardization: ISO.
- I. 11733, Water quality - Determination of the elimination and biodegradability of organic compounds in an aqueous medium - Activated sludge simulation test., in ISO 11733. 2004, ISO. p. 27.
- OECD, OECD Guideline for the Testing of Chemicals, in Simulation Test - Aerobic Sewage Treatment: 303 A: Activted Sludge Units - 303 B: Biofilms. 2001, Organization for Economic Co-operation Development: Paris.
- EEC, Concerning Urban Waste Water Treatrment, E.U. Council, Editor. 1991, EEC: O.J. European Communities. p. 13.
- N.F. Gray, Biology of Wastewater Treatment.
- S. Massa, M. Caruso, F. Trovatelli, M. Tosques, Comparison of plate count agar and R2A medium for enumeration of heterotrophic bacteria in natural mineral water, World J Microbiol Biotechnol, 1998, 14(5), 727-730.
- ATCC, Product Information Sheet for ATCC 15597-B1, A.T.C.C. (ATCC), Editor. 2005, ATCC. p. 2.
- ATCC, Mehtod 1602: Male-specific (F+) and Somatic Coliphage in Water by Single Agar Layer (SAL), U.S.E.P.A.O.o. Water., Editor. 2001. p. 30.
- A. Garrido, R.M. Pashley, B.W. Ninham, Water sterilisation using different hot gases in a bubble column reactor, J Environ Chem Eng, 2018, 6(2), 2651-2659.
- USEPA, Method 1602: Male-specific (F+) and Somatic Coliphage in Water by Single Agar Layer (SAL) procedure: U.S. Environmental Protection Agency Report 821-R-01-029, 38 p. 2001.
- J. Cormier, Janes, M., A double layer plaque assay using spread plate technique for enumeration of bacteriophage MS2, J Virol Methods, 2014, 196, 86-92.
- A.M. Kropinski, A. Mazzocco, T.E. Waddell, E. Lingohr, R.P. Johnson, Enumeration of bacteriophages by double agar overlay plaque assay, Methods Mol Biol, 2009, 501, 69-76.
- P. Zhang, S. Huang, N. Zhang, A.T. Kan, M.B. Tomson, Automated Analytical Method To Determine Solution Alkalinity of Oilfield Brine in the Presence of Weak Organic Acids, Ind Eng Chem Res, 2019, 58(11), 4667-4673.
- A. Garrido, R.M. Pashley, B.W. Ninham, Low temperature MS2 (ATCC15597-B1) virus inactivation using a hot bubble column evaporator (HBCE), Colloids Surf B, 2016, 151, 1-10.
- A.G. Sanchis, M. Shahid, R.M. Pashley, Improved virus inactivation using a hot bubble column evaporator (HBCE), Colloids Surf B, 2018, 165, 293-302.
- M.R.J. Clokie A.M. Kropinski, Enumeration of Bacteriophages by Double Agar Overlay Plaque Assay, in Bacteriophages, U.o. Leicester, Editor. 2009: Humana Press.
- K. Seo, Lee, J. E., Lim, M. Y., Ko, G., Effect of temperature, pH, and NaCl on the inactivation kinetics of murine norovirus, J Food Prot, 2012, 75(3), 533-40.
- H. Zhong, K. Fujii, Y. Nakano, F. Jin, Effect of CO2 Bubbling into Aqueous Solutions Used for Electrochemical Reduction of CO2 for Energy Conversion and Storage, J Phys Chem C, 2015, 119(1), 55-61.
- W. Knoche, Chemical Reactions of CO2 in Water, in Biophysics and Physiology of Carbon Dioxide: Symposium Held at the University of Regensburg (FRG) April 17–20, 1979, C. Bauer, G. Gros, and H. Bartels, Editors. 1980, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 3-11.
- O. Erkmen, Effects of Dense Phase Carbon Dioxide on Vegetative Cells, in Dense Phase Carbon Dioxide. 2012, Wiley-Blackwell. p. 67-97.
- H.M. Lin, Z. Yang, L.F. Chen, Inactivation of Saccharomyces cerevisiae by supercritical and subcritical carbon dioxide, Biotechnol Progr, 1992, 8(5), 458-461.
- R. Orij, M.L. Urbanus, F.J. Vizeacoumar, G. Giaever, C. Boone, C. Nislow, S. Brul, G.J. Smits, Genome-wide analysis of intracellular pH reveals quantitative control of cell division rate by pHc in Saccharomyces cerevisiae, Genome Biol, 2012, 13(9), R80.
- J.H.S. Richard, C. Flagan, Fundamentals of air pollution engineering. Chapter 2 Combustion fundamentals. Prentice-Hall, Inc.: California Institute of Technology. p. 59 - 166.
- B.P. Reines, B.W. Ninham, Structure and function of the endothelial surface layer: unraveling the nanoarchitecture of biological surfaces, Q Rev Biophys, 2019, 52, e13.
- B.W. Ninham, R.M. Pashley, P. Lo Nostro, Surface forces: Changing concepts and complexity with dissolved gas, bubbles, salt and heat, Curr Opin Colloid Interface Sci, 2017, 27, 25-32.
- M.E. Karaman, B.W. Ninham, R.M. Pashley, Effects of Dissolved Gas on Emulsions, Emulsion Polymerization, and Surfactant Aggregation, J Phys Chem, 1996, 100(38), 15503-15507.
- H.K. Kim, E. Tuite, B. Nordén, B.W. Ninham, Co-ion dependence of DNA nuclease activity suggests hydrophobic cavitation as a potential source of activation energy, Eur Phys J E, 2001, 4(4), 411-417.
- B. Feng, R.P. Sosa, A.K.F. Mårtensson, K. Jiang, A. Tong, K.D. Dorfman, M. Takahashi, P. Lincoln, C.J. Bustamante, F. Westerlund, B. Nordén, Hydrophobic catalysis and a potential biological role of DNA unstacking induced by environment effects, Proceedings of the National Academy of Sciences, 2019, 116(35), 17169-17174.
- N.F. Bunkin, B.W. Ninham, P.S. Ignatiev, V.A. Kozlov, A.V. Shkirin, A.V. Starosvetskij, Long-living nanobubbles of dissolved gas in aqueous solutions of salts and erythrocyte suspensions, J Biophotonics, 2011, 4(3), 150-164.
- N.F. Bunkin, A.V. Kochergin, A.V. Lobeyev, B.W. Ninham, O.I. Vinogradova, Existence of charged submicrobubble clusters in polar liquids as revealed by correlation between optical cavitation and electrical conductivity, Colloids Surf Physicochem Eng Aspects, 1996, 110(2), 207-212.
- W. Kunz, P. Lo Nostro, B.W. Ninham, The present state of affairs with Hofmeister effects, Curr Opin Colloid Interface Sci, 2004, 9(1), 1-18.
- S. Gudkov, G. Lyakhov, V. Pustovoy, I. Shcherbakov, Influence of Mechanical Effects on the Hydrogen Peroxide Concentration in Aqueous Solutions, Phys Wave Phenom, 2019, 27, 141-144.
- Z. Fang, X. Wang, L. Zhou, L. Zhang, J. Hu, Formation and Stability of Bulk Nanobubbles by Vibration, ACS J Surf Collo, 2020, 36(9), 2264-2270.
- N.F. Bunkin, A.V. Shkirin, B.W. Ninham, S.N. Chirikov, L.L. Chaikov, N.V. Penkov, V.A. Kozlov, S.V. Gudkov, Shaking-Induced Aggregation and Flotation in Immunoglobulin Dispersions: Differences between Water and Water–Ethanol Mixtures, ACS Omega, 2020, 5(24), 14689-14701.
- M. Boström, V.S.J. Craig, R. Albion, D.R.M. Williams, B.W. Ninham, Hofmeister Effects in pH Measurements: Role of Added Salt and Co-Ions, J Phys Chem B, 2003, 107(13), 2875-2878.
- A. Salis, M. Cristina Pinna, D. Bilani?ová, M. Monduzzi, P. Lo Nostro, B.W. Ninham, Specific Anion Effects on Glass Electrode pH Measurements of Buffer Solutions: Bulk and Surface Phenomena, J Phys Chem B, 2006, 110(6), 2949-2956.
- H.K. Kim, E. Tuite, B. Nordén, B.W. Ninham, Co-ion dependence of DNA nuclease activity suggests hydrophobic cavitation as a potential source of activation energy, Eur Phy JE, 2001, 4(4), 411-417.
- P. Lo Nostro, B.W. Ninham, A. Lo Nostro, G. Pesavento, L. Fratoni, P. Baglioni, Specific ion effects on the growth rates of Staphylococcus aureus and Pseudomonas aeruginosa, Phys Biol, 2005, 2(1), 1-7.
- M.H. Adams, Surface inactivation of bacterial viruses and of proteins, J Gen Physiol, 1948, 31(5), 417-431.