Vol. 4 No. 2 Suppl. 1 (2020) - About Water: Novel Technologies for the New Millennium
Special Issue Article

Very High Efficiency of Pathogen Inactivation by Body Temperature CO2 Bubbles: in Pursuit of Mechanism

Adrian Garrido Sanchis
School of Sciences, University of New South Wales, Canberra, Australia. Northcott Dr, Campbell ACT
Barry W. Ninham
Department of Applied Mathematics, Research School of Physical Sciences, The Australian National University, Canberra, Australia
Bio

Published 2021-03-22

Keywords

  • E. Coli,
  • Water Reuse,
  • Carbon Dioxide,
  • Combustion Gas,
  • Alkalinity

How to Cite

Garrido Sanchis, A., & Ninham, B. W. (2021). Very High Efficiency of Pathogen Inactivation by Body Temperature CO2 Bubbles: in Pursuit of Mechanism. Substantia, 57-67. https://doi.org/10.36253/Substantia-1030

Abstract

A CO2 bubble column (CBC) has been developed as a body-temperature lab-scale water sterilization process for the inactivation of pathogens. Both CO2 and combustion gas bubbles inactivated Escherichia coli C-3000 (ATCC15597) with extraordinary efficiency in solutions with low alkalinity. The mechanisms of inactivation were not known. To characterise the phenomena a new first-order kinetic equation that correlates E.coli inactivation rates with a total alkalinity of the solutions has been developed as a first step towards understanding. This leads us to propose a new mechanism of inactivation.

References

  1. WHO, Technical guidance on water-related disease surveillance 2011, World Health Organization.
  2. F. Rusling, Environmental Electrochemistry: Fundamentals and Applications in Pollution Abatement By Krishnan Rajeshwar (University of Texas at Arlington) and Jorge G. Ibanez (Universidad IberoAmericana). Academic Press: San Diego. 1996. $95.00. xvi + 776 pp. ISBN 0-12-576260-7, J Am Chem Soc, 1998, 120(45), 11837-11837.
  3. G.F.a.M.O. Balaban, Introduction to Dense Phase Carbon Dioxide Technology, in Dense Phase Carbon Dioxide, B.P. Professional, Editor. 2012. p. 1-4.
  4. A. Garrido Sanchis, R. Pashley, B.W. Ninham, Virus and bacteria inactivation by CO2 bubbles in solution, npj Clean Water, 2019, 2(1), 5.
  5. B.P. Reines, B.W. Ninham, Structure and function of the endothelial surface layer: unraveling the nanoarchitecture of biological surfaces, Quarterly reviews of biophysics, 2019, 52, e13.
  6. A. El-Betany, E. Behiry, M. Gumbleton, K. Harding, Humidified Warmed CO2 Treatment Therapy Strategies Can Save Lives with Mitigation and Suppression of SARS-CoV-2 Infection: An Evidence Review. 2020.
  7. G.W. VanLoon, S.J. Duffy, Environmental chemistry : a global perspective, 2005.
  8. C. Baird, M. Cann, Environmental chemistry. 2012, New York, NY: W.H. Freeman and Company.
  9. G. Reshes, S. Vanounou, I. Fishov, M. Feingold, Cell shape dynamics in Escherichia coli, Biophys J, 2008, 94(1), 251-264.
  10. R.A. Welch, The Genus Escherichia, in The Prokaryotes: Volume 6: Proteobacteria: Gamma Subclass, M. Dworkin, et al., Editors. 2006, Springer New York: New York, NY. p. 60-71.
  11. ATCC, Product Sheet Escherichia coli (ATCC 15597), ATCC, Editor. 2015.
  12. X. Yang, Introduction, in A Study on Antimicrobial Effects of Nanosilver for Drinking Water Disinfection. 2017, Springer Singapore: Singapore. p. 1-12.
  13. I. Gaska, O. Bilenko, S. Smetona, Y. Bilenko, R. Gaska, M. Shur, Deep UV LEDs for Public Health Applications, Int J High Speed Electron, 2014, 23(03n04), 1450018.
  14. A.T. Spinks, R.H. Dunstan, T. Harrison, P. Coombes, G. Kuczera, Thermal inactivation of water-borne pathogenic and indicator bacteria at sub-boiling temperatures, Water Res, 2006, 40(6), 1326-1332.
  15. McGuigan, Joyce, Conroy, Gillespie, M. Elmore, Solar disinfection of drinking water contained in transparent plastic bottles : characterizing the bacterial inactivation process, J Appl Microbiol, 1998, 84(6), 1138-1148.
  16. I. 10705-1, Water quality - Detection and enumeration of bacteriphages- Part 1, in ISO 10705-1. 1995, International Organization for Standardization: ISO.
  17. I. 11733, Water quality - Determination of the elimination and biodegradability of organic compounds in an aqueous medium - Activated sludge simulation test., in ISO 11733. 2004, ISO. p. 27.
  18. OECD, OECD Guideline for the Testing of Chemicals, in Simulation Test - Aerobic Sewage Treatment: 303 A: Activted Sludge Units - 303 B: Biofilms. 2001, Organization for Economic Co-operation Development: Paris.
  19. EEC, Concerning Urban Waste Water Treatrment, E.U. Council, Editor. 1991, EEC: O.J. European Communities. p. 13.
  20. N.F. Gray, Biology of Wastewater Treatment.
  21. S. Massa, M. Caruso, F. Trovatelli, M. Tosques, Comparison of plate count agar and R2A medium for enumeration of heterotrophic bacteria in natural mineral water, World J Microbiol Biotechnol, 1998, 14(5), 727-730.
  22. ATCC, Product Information Sheet for ATCC 15597-B1, A.T.C.C. (ATCC), Editor. 2005, ATCC. p. 2.
  23. ATCC, Mehtod 1602: Male-specific (F+) and Somatic Coliphage in Water by Single Agar Layer (SAL), U.S.E.P.A.O.o. Water., Editor. 2001. p. 30.
  24. A. Garrido, R.M. Pashley, B.W. Ninham, Water sterilisation using different hot gases in a bubble column reactor, J Environ Chem Eng, 2018, 6(2), 2651-2659.
  25. USEPA, Method 1602: Male-specific (F+) and Somatic Coliphage in Water by Single Agar Layer (SAL) procedure: U.S. Environmental Protection Agency Report 821-R-01-029, 38 p. 2001.
  26. J. Cormier, Janes, M., A double layer plaque assay using spread plate technique for enumeration of bacteriophage MS2, J Virol Methods, 2014, 196, 86-92.
  27. A.M. Kropinski, A. Mazzocco, T.E. Waddell, E. Lingohr, R.P. Johnson, Enumeration of bacteriophages by double agar overlay plaque assay, Methods Mol Biol, 2009, 501, 69-76.
  28. P. Zhang, S. Huang, N. Zhang, A.T. Kan, M.B. Tomson, Automated Analytical Method To Determine Solution Alkalinity of Oilfield Brine in the Presence of Weak Organic Acids, Ind Eng Chem Res, 2019, 58(11), 4667-4673.
  29. A. Garrido, R.M. Pashley, B.W. Ninham, Low temperature MS2 (ATCC15597-B1) virus inactivation using a hot bubble column evaporator (HBCE), Colloids Surf B, 2016, 151, 1-10.
  30. A.G. Sanchis, M. Shahid, R.M. Pashley, Improved virus inactivation using a hot bubble column evaporator (HBCE), Colloids Surf B, 2018, 165, 293-302.
  31. M.R.J. Clokie A.M. Kropinski, Enumeration of Bacteriophages by Double Agar Overlay Plaque Assay, in Bacteriophages, U.o. Leicester, Editor. 2009: Humana Press.
  32. K. Seo, Lee, J. E., Lim, M. Y., Ko, G., Effect of temperature, pH, and NaCl on the inactivation kinetics of murine norovirus, J Food Prot, 2012, 75(3), 533-40.
  33. H. Zhong, K. Fujii, Y. Nakano, F. Jin, Effect of CO2 Bubbling into Aqueous Solutions Used for Electrochemical Reduction of CO2 for Energy Conversion and Storage, J Phys Chem C, 2015, 119(1), 55-61.
  34. W. Knoche, Chemical Reactions of CO2 in Water, in Biophysics and Physiology of Carbon Dioxide: Symposium Held at the University of Regensburg (FRG) April 17–20, 1979, C. Bauer, G. Gros, and H. Bartels, Editors. 1980, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 3-11.
  35. O. Erkmen, Effects of Dense Phase Carbon Dioxide on Vegetative Cells, in Dense Phase Carbon Dioxide. 2012, Wiley-Blackwell. p. 67-97.
  36. H.M. Lin, Z. Yang, L.F. Chen, Inactivation of Saccharomyces cerevisiae by supercritical and subcritical carbon dioxide, Biotechnol Progr, 1992, 8(5), 458-461.
  37. R. Orij, M.L. Urbanus, F.J. Vizeacoumar, G. Giaever, C. Boone, C. Nislow, S. Brul, G.J. Smits, Genome-wide analysis of intracellular pH reveals quantitative control of cell division rate by pHc in Saccharomyces cerevisiae, Genome Biol, 2012, 13(9), R80.
  38. J.H.S. Richard, C. Flagan, Fundamentals of air pollution engineering. Chapter 2 Combustion fundamentals. Prentice-Hall, Inc.: California Institute of Technology. p. 59 - 166.
  39. B.P. Reines, B.W. Ninham, Structure and function of the endothelial surface layer: unraveling the nanoarchitecture of biological surfaces, Q Rev Biophys, 2019, 52, e13.
  40. B.W. Ninham, R.M. Pashley, P. Lo Nostro, Surface forces: Changing concepts and complexity with dissolved gas, bubbles, salt and heat, Curr Opin Colloid Interface Sci, 2017, 27, 25-32.
  41. M.E. Karaman, B.W. Ninham, R.M. Pashley, Effects of Dissolved Gas on Emulsions, Emulsion Polymerization, and Surfactant Aggregation, J Phys Chem, 1996, 100(38), 15503-15507.
  42. H.K. Kim, E. Tuite, B. Nordén, B.W. Ninham, Co-ion dependence of DNA nuclease activity suggests hydrophobic cavitation as a potential source of activation energy, Eur Phys J E, 2001, 4(4), 411-417.
  43. B. Feng, R.P. Sosa, A.K.F. Mårtensson, K. Jiang, A. Tong, K.D. Dorfman, M. Takahashi, P. Lincoln, C.J. Bustamante, F. Westerlund, B. Nordén, Hydrophobic catalysis and a potential biological role of DNA unstacking induced by environment effects, Proceedings of the National Academy of Sciences, 2019, 116(35), 17169-17174.
  44. N.F. Bunkin, B.W. Ninham, P.S. Ignatiev, V.A. Kozlov, A.V. Shkirin, A.V. Starosvetskij, Long-living nanobubbles of dissolved gas in aqueous solutions of salts and erythrocyte suspensions, J Biophotonics, 2011, 4(3), 150-164.
  45. N.F. Bunkin, A.V. Kochergin, A.V. Lobeyev, B.W. Ninham, O.I. Vinogradova, Existence of charged submicrobubble clusters in polar liquids as revealed by correlation between optical cavitation and electrical conductivity, Colloids Surf Physicochem Eng Aspects, 1996, 110(2), 207-212.
  46. W. Kunz, P. Lo Nostro, B.W. Ninham, The present state of affairs with Hofmeister effects, Curr Opin Colloid Interface Sci, 2004, 9(1), 1-18.
  47. S. Gudkov, G. Lyakhov, V. Pustovoy, I. Shcherbakov, Influence of Mechanical Effects on the Hydrogen Peroxide Concentration in Aqueous Solutions, Phys Wave Phenom, 2019, 27, 141-144.
  48. Z. Fang, X. Wang, L. Zhou, L. Zhang, J. Hu, Formation and Stability of Bulk Nanobubbles by Vibration, ACS J Surf Collo, 2020, 36(9), 2264-2270.
  49. N.F. Bunkin, A.V. Shkirin, B.W. Ninham, S.N. Chirikov, L.L. Chaikov, N.V. Penkov, V.A. Kozlov, S.V. Gudkov, Shaking-Induced Aggregation and Flotation in Immunoglobulin Dispersions: Differences between Water and Water–Ethanol Mixtures, ACS Omega, 2020, 5(24), 14689-14701.
  50. M. Boström, V.S.J. Craig, R. Albion, D.R.M. Williams, B.W. Ninham, Hofmeister Effects in pH Measurements: Role of Added Salt and Co-Ions, J Phys Chem B, 2003, 107(13), 2875-2878.
  51. A. Salis, M. Cristina Pinna, D. Bilaničová, M. Monduzzi, P. Lo Nostro, B.W. Ninham, Specific Anion Effects on Glass Electrode pH Measurements of Buffer Solutions: Bulk and Surface Phenomena, J Phys Chem B, 2006, 110(6), 2949-2956.
  52. H.K. Kim, E. Tuite, B. Nordén, B.W. Ninham, Co-ion dependence of DNA nuclease activity suggests hydrophobic cavitation as a potential source of activation energy, Eur Phy JE, 2001, 4(4), 411-417.
  53. P. Lo Nostro, B.W. Ninham, A. Lo Nostro, G. Pesavento, L. Fratoni, P. Baglioni, Specific ion effects on the growth rates of Staphylococcus aureus and Pseudomonas aeruginosa, Phys Biol, 2005, 2(1), 1-7.
  54. M.H. Adams, Surface inactivation of bacterial viruses and of proteins, J Gen Physiol, 1948, 31(5), 417-431.