Research Articles

# Equivalence of Electromagnetic Fluctuation and Nuclear (Yukawa) Forces: the π₀ Meson, its Mass and Lifetime

Published 2022-12-05

### Keywords

- Casimir-effect,
- positron-electron-plasma,
- Meson-theory,
- lifetime

### How to Cite

*Substantia*,

*7*(1), 7–14. https://doi.org/10.36253/Substantia-1807

Copyright (c) 2022 Barry W. Ninham, Prof. Iver Brevik, Mathias Boström

This work is licensed under a Creative Commons Attribution 4.0 International License.

## Abstract

It is shown how Maxwell’s equations for the electromagnetic field with Planck quantisation of allowed modes appears to provide a semiclassical account of nuclear interactions. The mesons emerge as plasmons, collective excitations in an electron positron pair sea. The lifetime and mass of mesons are predicted.

### References

- Freeman Dyson, communicated to BWN. See also: F. J. Dyson, ”Feynman’s proof of the Maxwell’s equations”, Am. J. Phys. 58, 209 (1990). A related observation was made by R. P. Feynman, Phys. Rev. 80, 440 (1950): ‘‘high energy potentials could excite states corresponding to other eigenvalues, possibly thereby corresponding to other masses”.
- G. C. Wick, “Range of nuclear forces in Yukawa's theory”, Nature 142, 293-294 (1937).
- H. B. G. Casimir, “On the attraction between two perfectly conducting plates”, Proc. K. Ned. Akad. Wet. 51, 793 (1948).
- B. W. Ninham and V. A. Parsegian, “van der Waals forces: special characteristics in lipid-water systems and a general method of calculation based on the Lifshitz theory”, Biophys. J. 10, 646 (1970).
- V. A. Parsegian and B. W. Ninham , “Temperature-dependent van der Waals forces.”, Biophys. J. 10, 664 (1970).
- D. J. Mitchell, B. W. Ninham and P. Richmond, “On black body radiation and the attractive force between two metal plates”, Am. J. Phys. 40, 674 (1972).
- I. E. Dzyaloshinskii, E. M. Lifshitz, and P. P. Pitaevskii, ”The general theory of van der Waals forces”, Advan. Phys. 10, 165 (1961).
- Deryaguin in B.V Deryaguin, I.I . Abrikosova and E. M Lifshitz, ”Direct measurement of molecular attraction between solids separated by a narrow gap”, Quart. Revs. Chem.Soc 10, 295 (1956).
- B. W. Ninham, V. A. Parsegian and G. Weiss, “On the macroscopic theory of temperature-dependent van der Waals forces”, J. Stat. Phys. 2, 323 (1970).
- P. Richmond and B. W. Ninham, “A note on the extension of the Lifshitz theory of van der Waals forces to magnetic media”, J. Phys. C: Solid State Phys. 4, 1988 (1971).
- G. Bimonte, “Beyond-proximity-force-approximation Casimir force between two spheres at finite temperature”, Phys. Rev. D 97, 085011 (2018).
- J. Lekner, Theory of Reflection. Reflection and Transmission of Electromagnetic, Particle and Acoustic Waves, 2nd Ed. (Springer, New York, 2016).
- E. M. Lifshitz, ”The theory of molecular attractive forces between Solids”, Sov. Phys. 2, 73 (1956).
- B. W. Ninham, and J. Daicic, “Lifshitz theory of Casimir forces at finite temperature”, Phys. Rev. A 57, 1870 (1998).
- L. D. Landau, E. M. Lifshitz, Statistical Physics, Part 1, 3rd edition (Butterworth-Heinemann, Oxford, 1999).
- H. Yukawa, “On the interaction of elementary particles. I”, Proc. Phys. Math. Soc. Japan 17, 48 (1935).
- L. D. Landau, E. M. Lifshitz, Quantum Mechanics (Non-relativistic Theory), 3rd edition (Butterworth-Heinemann, Oxford, 1997).
- J. Mahanty and B. W. Ninham, Dispersion Forces, (Academic Press, London, 1976).
- B. W. Ninham and M. Boström, “Screened Casimir force at finite temperatures: a possible role for nuclear interactions”, Phys. Rev. A 67, 030701 (2003).
- B. W. Ninham, M. Boström, C. Persson, I. Brevik, S. Y. Buhmann, and Bo E. Sernelius, ”Casimir forces in a plasma: possible connections to Yukawa potentials”, Eur. Phys. J. D 68, 328 (2014).
- P. A. Zyla et al. (Particle Data Group), ”Review of particle physics”, Prog. Theor. Exp. Phys. 2020, 083C01 (2020); page 1212.
- B. W. Ninham, C. J. Powell, and N. Swanson, “Plasmon damping in metals”, Phys. Rev. 145, 209 (1966).
- S. Weinberg, The Quantum Theory of Fields, Volume II Modern Applications (Cambridge University Press, Cambridge, 2016).
- W. E. Burcham and M. Jobes, Nuclear and particle physics, (Longman Scientific & Technical, Essex, 1995).
- J. D. Jackson, The Physics of Elementary Particles (Princeton Legacy Library, London, 1958).
- I. Larin et al., ”Precision measurement of the neutral pion lifetime”, Science 368, 505 (2020).
- H. B. Meyer, ”?_0 decay precision-tests the chiral anomaly”, Science 368, 469 (2020).
- K. Kampf and B. Moussallam, ” Chiral expansions of the ?_0 lifetime”, Phys. Rev. D 79, 076005 (2009).
- A. M. Bernstein and B. R. Holstein, ”Neutral pion lifetime measurements and the QCD chiral anomaly”, Rev. Mod. Phys. 85, 49 (2013).
- J. J. Aubert, et al., ”The ratio of the nucleon structure functions F2N for iron and deuterium”, Phys. Lett. B 123, 275–278 (1983).
- G. Feldman, “Origin of neutron and proton changes in nuclei”, Nature 566, 332 (2019).
- The CLAS Collaboration, ”Modified structure of protons and neutrons in correlated pairs” Nature 566, 354 (2019).
- O. Mauel, C. Bolon, A. Katragada, and M. Insall, ”Attraction and repulsion of nucleons: sources of stellar energy”, J. Fusion Energy 19, 93 (2000).
- V. Kowalenko, N. E. Frankel, and K. C. Hines, ”Response theory of particle-anti-particle plasmas”, Phys. Rep. 126, 109 (1985).
- J. Daicic, N. E. Frankel, and V. Kowalenko, ”Magnetized pair Bose gas: relativistic superconductor”, Phys. Rev. Lett. 71, 1779 (1993).
- J. Daicic, N. E. Frankel, R. M. Gailis, and V. Kowalenko, ”Statistical mechanics of the magnetized pair quantum gases”, Phys. Rep. 237, 128 (1993).
- B. W. Ninham and V. V. Yaminsky, “Ion binding and ion specificity: The Hofmeister effect Onsager and Lifschitz theories”, Langmuir 13, 2097 (1997).
- B. D. Hughes and B. W. Ninham, ”A correspondence theory”, Physica A 443, 495 (2016). [This publication promotes modern analysis as the fundamental language of quantum physics. A corrected version of this work was published in Substanta 2, 51 (2018)].
- D. Parsons, M. Boström, P. Lo Nostro, B. W. Ninham, “Hofmeister effects: interplay of hydration, non-electrostatic potentials, and ion size”, Phys. Chem. Chem. Phys. 13, 12352 (2011).
- B. W. Ninham and P. Lo Nostro, Molecular Forces and Self Assembly in Colloid, in Nano Sciences and Biology, (Cambridge University Press, Cambridge, 2010).
- M. Boström, D. R. M. Williams, and B. W. Ninham, “Specific ion effects: why DLVO theory fails for biology and colloid systems”, Phys. Rev. Lett. 87, 168103 1-4 (2001).