Vol. 4 No. 2 Suppl. 1 (2020) - About Water: Novel Technologies for the New Millennium
Special Issue Article

A Review and Update of Bubble Column Evaporator Processes

Barry W. Ninham
Department of Applied Mathematics, Research School of Physical Sciences, The Australian National University, Canberra, ACT 2600, Australia
Muhammad Shahid
School of Science, University of New South Wales, Northcott Drive, Campbell, ACT 2610, Canberra, Australia
Richard M. Pashley
School of Science, University of New South Wales, Northcott Drive, Campbell, ACT 2610, Canberra, Australia

Published 2021-03-22


  • Bubble column evaporator,
  • sub-boiling,
  • bubble inhibition,
  • thermolysis,
  • desalinisation,
  • heat of vaporisation,
  • supersaturation
  • ...More

How to Cite

Ninham, B. W. ., Shahid, M., & Pashley, R. M. . (2021). A Review and Update of Bubble Column Evaporator Processes. Substantia, 19-32. https://doi.org/10.36253/Substantia-823


This paper gives an updated review of the bubble column evaporator (BCE) and its various new processes. These include recent work on helium gas desalination and high temperature inlet gas decomposition. The BCE process offers a continuously produced source of high gas-water interface and consequently provides high overall heat and mass transfer coefficients. Very different results have been obtained using nitrogen, oxygen, carbon dioxide and helium inlet gases. Although the bubbling process itself is both simple to use and apply, our understanding of the fundamental physical and chemical principles involved is surprisingly limited and there are many issues yet to be explained.  Recently the process has been used to develop new methods for the precise determination of enthalpies of vaporisation of concentrated salt solutions, as an evaporative cooling system, a sub-boiling thermal desalination unit, for sub-boiling thermal sterilization, for low temperature thermal decomposition of different solutes in aqueous solution and for the inhibition of particle precipitation in supersaturated solutions. These novel applications can be very useful in many industrial practices, such as desalination, water/wastewater treatment, thermolysis of ammonium bicarbonate (NH4HCO3) for the regeneration in forward osmosis and refrigeration related industries. The background theories and models use to explain the BCE process are also reviewed and this fundamental knowledge is applied to the design of BCE systems and to explain recently explored applications, as well as potential improvements.  Many other prospective applications of the BCE process are also reported in this paper.


  1. P. Zehner, M. Kraume, Bubble columns, Ullmann's Encyclopedia of Industrial Chemistry, 2000.
  2. A. H. Luedicke, B. Hendrickson, G. M. Pigott, A method for the concentration of proteinaceous solutions by submerged combustion, J. Food Sci., 1979, 44, 1469-1473.
  3. C. P. Ribeiro, P. L. C. Lage, Gas‐Liquid Direct‐Contact Evaporation: A Review, Chem. Eng. Technol., 2005, 28 (10), 1081-1107.
  4. M. Schluter, A-M. Billet, S. Herres-Pawlis, Reactive Bubbly Flows, Chem. Eng. Technol., 2017, 40 (8), 1384.
  5. J. B. Joshi, K. Nandakumar, G. M. Evans, V. K. Pareek, M. M. Gumulya, M. J. Sathe, M. A. Khanwale, Bubble generated turbulence and direct numerical simulations, Chem. Eng. Sci., 2017, 157, 26–75.
  6. Y. T. Shah, B. G. Kelkar, S. P. Godbole, W. D. Deckwer, Design parameters estimations for bubble column reactors, AIChE Journal, 1982, 28 (3), 353-379.
  7. V. I. Klassen, V. A. Mokrousov, An introduction to the theory of flotation, London: Butterworths, 1963.
  8. M. Shahid, X. Xue, C. Fan, R.M. Pashley, Study of a novel method for the thermolysis of solutes in aqueous solution using a low temperature bubble column evaporator, J. Phys. Chem. B, 2015, 119 (25), 8072–8079.
  9. C. Fan, M. Shahid, and R. M. Pashley, Studies on bubble column evaporation in various salt solutions, J. Sol. Chem., 2014, 43 (8), 1297-1312.
  10. M. J. Francis, R. M. Pashley, Application of a Bubble Column for Evaporative Cooling and a Simple Procedure for Determining the Latent Heat of Vaporization of Aqueous Salt Solutions, J. Phys. Chem. B, 2009, 113 (27). 9311-9315.
  11. V. S. J. Craig, B. W. Ninham, R. M. Pashley, The effect of electrolytes on bubble coalescence in water, J. Phys.Chem., 1993, vol. 97(39), 10192-10197.
  12. Hierarchies of forces: The last 150 years, Advances in Colloid & Interface Science, 1982, 16 (1), 3-15.
  13. Proceedings of the IUTAM-IUPAC Symposium on Interaction of Particles in Colloidal Dispersions, Canberra, March 1981.
  14. V. S. J. Craig, Bubble coalescence and specific-ion effects, Curr. Opin. Colloid Interface Sci., 2004, 9 (1), 178-184.
  15. S. Marcelja, Short-range forces in surface and bubble interaction, Curr. Opin. Colloid Interface Sci., 2004, 9 (1), 165-167.
  16. B. P. Reines and B. W. Ninham, Structure and Function of the Endothelial Surface Layer: unravelling the nano-architecture of biological surfaces. Quarterly Reviews of Biophysics, 2019, 52, 1-11.
  17. M. J. Francis, R. M. Pashley, Thermal desalination using a non-boiling bubble column, Desalin. Water Treat., 2009, 12 (1-3), 155-161; M. Shahid, R. M. Pashley, A study of the bubble column evaporator method for thermal desalination, Desalination, 2014, 351, 236-242.
  18. C. Fan, R.M. Pashley, Precise Method for Determining the Enthalpy of Vaporization of Concentrated Salt Solutions Using a Bubble Column Evaporator, J. Sol. Chem., 2015, 44 (1), 131-145.
  19. M. Taseidifar, M. Shahid, R. M. Pashley, A study of the bubble column evaporator method for improved thermal desalination, Desalination, 2018, 432, 97-103.
  20. X. Xue, R. M. Pashley, A study of low temperature inactivation of fecal coliforms in electrolyte solutions using hot air bubbles, Desalin. Water Treat., 2015, 1–11.
  21. M. Shahid, A study of the bubble column evaporator method for improved sterilization, J. Water Process. Eng., 2015, 8, 1-6.
  22. M. Shahid, R. M. Pashley, M. Rahman, Use of a high density, low temperature, bubble column for thermally efficient water sterilization, Desalin. Water Treat., 2014, 52, 4444–4452.
  23. C. Fan, R. M. Pashley, The controlled growth of calcium sulfate dihydrate (gypsum) in aqueous solution using the inhibition effect of a bubble column evaporator, Chem. Eng. Sci., 2016, 142, 23-31.
  24. P. N. Govindan, G. P. Thiel, R. K. McGovern, J. H. Lienhard, M. H. Elsharqawy, Bubble-Column Vapor Mixture Condenser, US8523985, Google Patents.
  25. G. P. Narayan, J. H. Lienhard, Thermal Design of Humidification–Dehumidification Systems for Affordable Small-Scale Desalination, IDA J. Desalin. Water Reuse, 2012, 4 (3), 24-34.
  26. M. Schmack, H. Goen, and A. Martin, A Bubble Column Evaporator with Basic Flat-plate Condenser for Brackish and Seawater Desalination, Environ. Technol., 2015, 37 (1), 74–85.
  27. P. Ghosh, Coalescence of air bubbles at air–water interface, Chem. Eng. Res. Des., 2004, 82 (7), 849-854.
  28. V. S. J. Craig, B. W. Ninham, R. M. Pashley, Effect of electrolytes on bubble coalescence, Nature, 1993, 364 (6435), 317-319.
  29. B. W. Ninham, R. M. Pashley, P. Lo Nostro, Surface forces: Changing concepts and complexity with dissolved gas, bubbles, salt and heat, Current Opinion in Colloid & Interface Science, 2016, 27, 25-32.
  30. M. Alheshibri, J. Qian, M. Jehannin and V. S. J. Craig, A history of nanobubbles. Langmuir, 2016, 32(43), 11086-11100.
  31. E. C. W. Clarke, D. N. Glew, Evaluation of the thermodynamic functions for aqueous sodium chloride from equilibrium and calorimetric measurements below 154℃, J. Phys. Chem. Ref. Data, 1985, 14, 489, 1985.
  32. D. E. Garrett, Handbook of lithium and natural calcium chloride, London: Academic Press, 2004.
  33. D. R. Lide, T. J. Bruno, CRC handbook of chemistry and physics: CRC Press, Boca Raton, 2012.
  34. A. G. Sanchis, R. M. Pashley, B. W. Ninham, Virus and bacteria inactivation by CO2 bubbles in solution, NPJ Clean Water, 2019, 2.
  35. I. Leifer, R. K. Patro, P. Bowyer, A study on the temperature variation of rise velocity for large clean bubbles, J. Atmos. Ocean. Tech., 2000, 17(10), 1392-1402.
  36. R. M. Pashley, M. J. Francis, M. Rzechowicz, Unusual properties of water: Effects on desalination processes, Water, 2008, 35 (8), 67-71.
  37. A. A. Kulkarni, J. B. Joshi, Bubble formation and bubble rise velocity in gas-liquid systems: A review, Industrial & Engineering Chemistry Research, 2005, 44(16), 5873-5931.
  38. R. Clift, J. Grace, M. Weber, Bubbles, drops and particles New York, Academic Press, 1978.
  39. J. J. Quinn, M. Maldonado, C. O. Gomez, J. A. Finch, Experimental study on the shape–velocity relationship of an ellipsoidal bubble in inorganic salt solutions, Minerals Engineering, 2014, 55, 5-10.
  40. P. Gonzaleztello, F. Camacho, E. Jurado, M. P. Paez, Influence of surfactant concentration on the final rising rate of droplets, Canadian J. Chem. Eng., 1992, 70(3), 426-430.
  41. X. Luo, J. Zhang, K. Tsuchiya, L. S. Fan, On the rise velocity of bubbles in liquid-solid suspensions at elevated pressure and temperature, Chem. Eng. Sci., 1997, 52(21), 3693-3699.
  42. K. W. K. Li, and A. Schneider, Rise velocities of large bubbles in viscous Newtonian liquids, J. American Ceramic Soc., 1993, 76(1), 241-244.
  43. V. G. Levich, S. Technica, Physicochemical hydrodynamics: Prentice-hall Englewood Cliffs, NJ, 1962.
  44. D. Y. Chan, E. Klaseboer, R. Manica, Film drainage and coalescence between deformable drops and bubbles, Soft Matter, 2011, 7(6), 2235-2264.
  45. E. Klaseboer, R. Manica, D. Y. Chan, B. C. Khoo, BEM simulations of potential flow with viscous effects as applied to a rising bubble, Eng. Anal. Bound. Elem., 2011, 35(3), 489-494.
  46. E. W. Lemmon, R. T. Jacobsen, S. G. Penoncello, D. G. Friend, Thermodynamic properties of air and mixtures of nitrogen, argon, and oxygen from 60 to 2000 K at pressures to 2000 MPa, J. Phys. Chem. Ref. Data, 2000, 29(3), 331.
  47. F. J. Massey Jr, The Kolmogorov-Smirnov test for goodness of fit, J. Amer. Statist. Assoc., 1951, 46(253), pp. 68-78.
  48. R. M. Pashley, Method for desalination, US20090120877; Google Patents.
  49. E. W. Hough, M. J. Rzasa, B. B. Wood, Interfacial Tensions at Reservoir Pressures and Temperatures; Apparatus and the Water-Methane System, Journal of Petroleum Technology, 1951, 192, 57-60.
  50. R. V. Belosludov, Y. Y. Bozhko, O. S. Subbotin, V. R. Belosludov, H. Mizuseki, Y. Kawazoe, V. M. Fomin, Stability and Composition of Helium Hydrates Based on Ices Ih and II at Low Temperatures, J. Phys. Chem. C, 2014, 118(5), 2587-2593.
  51. C. Fan, A Study of Some Physical Properties of Concentrated Salt Solutions Using the Bubble Column Evaporator, PhD Thesis. School of Physical, Environmental and Mathematical Sciences, The University of New South Wales, 2016.
  52. R. M. Pashley, X. Xue, C. Fan, M. Shahid, Method for assisting thermally-induced changes, AU2015901956, 2015.
  53. J. R. McCutcheon, R. L. McGinnis, M. Elimelech, A novel ammonia—carbon dioxide forward (direct) osmosis desalination process, Desalination, 2005, 174(1), 1-11.
  54. N. P. G. N. Chandrasekara, and R. M. Pashley, Study of a new process for the efficient regeneration of ion exchange resins, Desalination, 2015, 357, 131-139.
  55. M. Okubo, T. Mori, The decomposition of potassium persulphate used as initiator in emulsion polymerization, Makromolekulare Chemie. Macromolecular Symposia, 1, Wiley Online Library, 1990, 143-156.
  56. J. W. Mullin, K. D. Raven, Influence of mechanical agitation on the nucleation of some aqueous salt solutions, Nature, 1962, 195, 35-38.
  57. J. W. Mullin, K. D. Raven, Nucleation in Agitated Solutions, Nature, 1961, 190(4772), 251.
  58. W. Beckmann, Crystallization: Basic Concepts and Industrial Applications, Weinheim: John Wiley & Sons, 2013.
  59. I. Mukhopadhyay, V. P. Mohandas, G. R. Desale, A. Chaudhary, P. K. Ghosh, Crystallization of Spherical Common Salt in the Submillimeter Size Range without Habit Modifier, Ind. Eng. Chem. Res., 2010, 49(23), 12197-12203.