Vol. 5 No. 2 (2021)
Historical Articles

Capillary Electrophoresis and its Basic Principles in Historical Retrospect. Part 2. Electrophoresis of Ions: the Period from its Discovery in 1800 till Faraday’s Lines of Electric Force in the 1840s.

Ernst Kenndler
Institute for Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
Bio
Drawing of Davy´s experimental arrangement with three glass tubes for the study “On the Passage of Acids, Alkalies, and other Substances through various attracting chemical Menstrua, by Means of Electricity”. It shows three glass tubes with platina wires as poles in the two outer tubes A and B, which communicate with the middle tube by strips of amianthus C (i.e. a fine silky asbestos), wetted with distilled water. The experiments are described in the text. It clearly confirms the migration of ions by electrophoresis.

Published 2021-09-09

Keywords

  • Ion electrophoresis,
  • History,
  • Action at a distance,
  • Electric field

How to Cite

Kenndler, E. (2021). Capillary Electrophoresis and its Basic Principles in Historical Retrospect. Part 2. Electrophoresis of Ions: the Period from its Discovery in 1800 till Faraday’s Lines of Electric Force in the 1840s. Substantia, 5(2), 97–120. https://doi.org/10.36253/Substantia-1312

Abstract

This review is the first in a series that deals exclusively with electrophoresis of ions. Since in modern terminology "electrophoresis is the movement of dispersed particles relative to a fluid under the influence of a spatially uniform electric field”, electrophoresis is not limited to colloidal particles, it includes ions as well. The history of electrophoresis of ions therefore begins in 1800 at the same time as that of electrolysis, because the two phenomena are so inextricably linked “that one cannot happen without the other” (Faraday, 1834).

Between 1800 and 1805 about half a dozen different theories of electrolytic decomposition and the movement of the particles - for which we coin the term electrophoretic current - were formulated, all contributing to the discourse, but lacking consistency and none fully convincing. They are discussed nonetheless because most of them fell into oblivion, even though they are interesting for historical reasons. However, from 1805/1806 the predominant theory, formulated by Theodor von Grotthuß and independently by Humphry Davy assumed that polarized molecules of water or dissolved ions form chains between the two electrodes. Only the terminal atoms of these chains were in direct contact with the electrodes and were liberated by galvanic action, but are immediately replaced by neighboring atoms of the same type. This decomposition and recombination of the molecules driven by electric forces which follow the “action at a distance” principle like in Coulomb´s law takes place over the entire chains; they represent the electrophoretic current. However, in 1833 Michael Faraday refuted all previous theories. Two of his groundbreaking findings were of particular importance for the electrophoresis of ions: one was that electricity consists of elementary units of charge. The ions thus carry one or a multiple of these units. The other was the revolutionary theory of the electric lines of force in early 1840s, and of what was later called the electric field. With these findings Faraday fundamentally changed the previously prevailing view of the electrophoresis of ions.

References

  1. E. Kenndler, M. Minárik, Substantia 2021, 5, 119-133.
  2. N. Gautherot, Ann. Chim. 1801, 39, 203-210.
  3. F. F. Reuss, Commentationes Societatis Physico-Medicae, Apud Universitatem Literarum Caesaream Mosquensem Institutae, Moscow, 1807, p. xxxix.
  4. F. F. Reuss, (Reuß, Ferdinand Friedrich von), Mémoires de la Société Impériale des Naturalistes de Moscou 1809, 2, 327–337.
  5. IUPAC, Compendium of Chemical Terminology (the "Gold Book"). Compiled by A. D. McNaught and A. Wilkinson. electrophoresis., Blackwell Scientific Publications, Oxford, 1997.
  6. J. Lyklema, Fundamentals of Interface and Colloid Science. Vol. II: Solid-Liquid Interfaces, Vol. 2, Academic Press, London, San Diego, 1995.
  7. J. H. Lyklema, Substantia 2017, 1, 75-93.
  8. W. Nicholson, Ann. Phys. (Gilbert ed.) 1800, VI, 340-375.
  9. W. Nicholson, Nicholson´s J. 1801, IV, 179-187.
  10. M. Faraday, Phil. Trans. 1834, 124, 77-122.
  11. W. Cruickshank, Nicholson´s J. 1801, IV, 187-191.
  12. W. Cruickshank, Ann. Phys. (Gilbert ed.) 1801, VII, 99-102.
  13. A. A. Fisher, Doctoral thesis, University of Minnesota (Minnesota), 2010.
  14. W. Cruickshank, Nicholson´s J. 1801, IV, 254-264.
  15. V. Becker, in Der Einbruch der Naturwissenschaft in die Medizin. Schriften der Mathematisch-naturwissenschaftlichen Klasse der Heidelberger Akademie der Wissenschaften, Vol. 20, Springer, Berlin, Heidelberg, 2008, p. 23.
  16. J. W. Ritter, Ann. Phys. (Gilbert ed.) 1801, 7, 409.
  17. J. W. Ritter, Neue Beyträge zur näheren Kenntnis des Galvanismus und Resultate seiner Untersuchung. Der Siderismus, Vol. 1/1, 1. ed., J. G. Cotta'schen Buchhandlung, Tübingen, 1808.
  18. J. W. Ritter, Der Siderismus. Campinetti, der königlich-baierischen Akademie der Wissenschaften vorgestellt, mit dem Antrag auf eine Commission zur Prüfung derselben; in einer General-Versammlung der königlichen Akademie, Vol. 1,1, J. G. Cotta, Tübingen, 1808.
  19. C. Amoretti, J. W. Ritter, Physikalisch und historische Untersuchungen über die Rabdomantie oder animalische Elektrometrie. Mit einigen ergänzenden Abhandlungen von J. W. Ritter, Vol. 1, Realschulbuchhandlung, Berlin, 1809.
  20. T. Dorn, Die Unglückseligen, Albrecht Knaus, Munich, 2016.
  21. H. Davy, Phil. Trans. 1826, 116, 383-422.
  22. J. W. Ritter, https://commons.wikimedia.org/wiki/File:Ritter-Johann-Wilhelm-1804.jpg?uselang=de, 1804.
  23. J. W. Ritter, Ann. Phys. (Gilbert ed.) 1800, 6, 470-471.
  24. J. W. Ritter, Ann. Pysik (Gilbert ed.) 1801, 9, 1-17.
  25. [J. W. Ritter, Voigt´s Magazin 1800, 2, 356-400.
  26. J. W. Ritter, Physisch-chemische Abhandlungen in chronologischer Folge, Vol. 1, C. H. Reclam, Leipzig, 1806.
  27. W. Babington, Nicholson’s J. 1801, IV, 511-513.
  28. T. v. Grotthuß, Physisch-chemische Forschungen, Vol. 1, Johann Leonhard Schrag, Nürnberg, 1820.
  29. J. W. Ritter, Beyträge zur nähern Kenntniss des Galvanismus und der Resultate seiner Untersuchung, Vol. 2/1, Friedrich Frommann, Jena, 1805.
  30. J. W. Ritter, Ann. Phys. (Gilbert ed.) 1801, 9, 265-352.
  31. H. Davy, Nicholson´s J. 1801, IV, 275-281.
  32. H. Davy, Nicholson´s J. 1801, IV, 326-328.
  33. H. Davy, Nicholson´s J. 1801, IV, 394-402.
  34. C. W. Böckmann, Ann. Phys. (Gilbert ed.) 1801, 8, 137-162.
  35. L. A. v. Arnim, Ann. Pysik (Gilbert ed.) 1801, 9, 494-492.
  36. [P. Erman, Ann. Phys. (Gilbert ed.) 1801, 8, 197-215.
  37. W. J. L. Gruner, Ann. Phys. (Gilbert ed.) 1801, 8, 216-227.
  38. L. W. Gilbert, Ann. Phys. (Gilbert ed.) 1801, 8, 209-215.
  39. L. W. Gilbert, Ann. Phys. (Gilbert ed.) 1801, 8, 166-171.
  40. P. L. Simon, Ann. Phys. (Gilbert ed.) 1801, 8, 22-43.
  41. P. L. Simon, Ann. Phys. (Gilbert ed.) 1802, 10, 282-300.
  42. C. W. Pfaff, Ann. Phys. (Gilbert ed.) 1801, 7, 363-367.
  43. P. Sue, Histoire du Galvanisme; et Analyse des differens ouvrages publiées sur cette découverte, depuis son origine jusqu'à ce jour, Vol. 2, 1 ed., Bernard, Paris, 1802.
  44. L. Brugnatelli, Annali di Chimica 1800, 18, 136.
  45. L. Brugnatelli, Ann. Phys. (Gilbert ed.) 1801, 8, 284-299.
  46. A. Volta, Ann. Phys. (Gilbert ed.) 1803, 14, 258-265.
  47. E. G. Robertson, Ann. Chim. 1801, 37, 132-150.
  48. P. Sue, Histoire du Galvanisme; et Analyse des differens ouvrages publiées sur cette découverte, depuis son origine jusqu'à ce jour, Vol. 1, 2. ed., Bernard, Paris, 1805.
  49. E. G. Robertson, Mémoires: récréatifs, scientifiques et anecdotiques., Vol. 1, L´auteur & Librairie de Wurtz, Paris, 1831.
  50. E. G. Robertson, Mémoires: récréatifs, scientifiques et anecdotiques., Vol. 2, L´auteur & Librairie de Wurtz, Paris, 1833.
  51. E. Gilbert, Ann. Phys. (Gilbert ed.) 1804, XVI, 1-44.
  52. E. Gilbert, Ann. Phys. (Gilbert ed.) 1804, XVI, 164-220.
  53. E. Gilbert, Ann. Phys. (Gilbert ed.) 1804, XVI, 257-290.
  54. J. F. Erdmann, Ann. Phys. (Gilbert ed.) 1803, 12, 450-457.
  55. J. F. Erdmann, Archiv med. Erfahrung (Horn ed.) 1804, VI, 126-190.
  56. J. F. Erdmann, Ann. Phys. (Gilbert ed.) 1802, 11, 211-220.
  57. W. Hisinger, J. J. Berzelius, N. Allg. J. Chem. (Gehlen ed.) 1803, 1, 115-149.
  58. W. Hisinger, J. J. Berzelius, Ann. Chim. 1804, 51, 167-174.
  59. I. Newton, Philosophiæ naturalis principia mathematica, 1. ed., S. Pepys, London, 1686.
  60. I. Newton, Newton's Principia. The Mathematical Principles of Natural Philosophy. By Sir Isaac Newton. Translated into English by Andrew Motte. To which is added, Newton's System of the World with a Life of the Author, by N. W. Chittenden, Vol. 1/2, Geo. P. Putnam, New York, 1850.
  61. C. A. d. Coulomb, Mémoires sur l'électricité et le magnetisme. Extraits des Mémoires de l'Académie Royale des Sciences de Paris, publiés dans les années 1785 à 1789, avec planches et tableaux, 1. ed., Bachelier, Paris, 1785-1789.
  62. H. Davy, Phil. Trans. 1807, 97, 1-56.
  63. T. v. Grotthuß, Ann. Phys. (Gilbert ed.) 1819, 61, 50-74.
  64. J. A. Krikštopaitis, Nuova Voltiana: Studies on Volta and His Times, 2000.
  65. C. J. T. d. Grotthuss, Mémoire sur la décomposition de l`eau et des corps qu`elle tient en dissolution à l´aide de l`électricité galvanique, Rome, 1805.
  66. C. I. T. d. Grotthius, Phil. Mag. 1806, 25, 330-339.
  67. C. J. T. d. Grotthuss, Ann. Chim. 1806, 58, 54-74.
  68. C. J. T. d. Grotthuss, Ann. Chim. 1807, 63, 5-34.
  69. C. J. T. d. Grotthuss, Nicholson’s J. 1811, 28, 112-125.
  70. T. v. Grotthuß, J. Phys. Chem. (Schweigger ed.) 1818, 20, 225-271.
  71. R. Pomès, Biochim. Biophys. Acta 2006, 1757, 871-875.
  72. C. J. T. v. Grotthuß, J. Chem. Phys. Mineral. (Gehlen ed.) 1808, 5, 110-126.
  73. M. Faraday, Experimental Researches in Electricity. Reprinted from the Philosophical Transactions of 1831-1838, Vol. 2, Richard and John Edward Taylor, London, 1839.
  74. M. Faraday, Ann. Phys. Chem. (Poggendorff ed.) 1842, Erg. Bd. 1, 249-281.
  75. T. v. Grotthuß, in Physisch-chemische Forschungen, Vol. 1, Johann Leonhard Schrag, Nürnberg, 1820, pp. 115-126.
  76. M. H. Klaproth, F. Wolff, Supplemente zu dem chemischen Wörterbuche von Martin Heinrich Klaproth und Friedrich Wolff, Vol. 1 (A-E), Vossische Buchhandlung, Berlin, 1816.
  77. J. W. Ritter, N. Allg. J. Chem. (Gehlen ed.) 1805, 3, 692-699.
  78. H. Davy, Phil. Trans. 1808, 98.
  79. H. Davy, The collected works of Sir Humphry Davy. Vol. V. Bakerian Lectures and Miscellanious Papers from 1806-1815, Vol. V, 1. ed., Smith, Elder and Co. Cornhill, London, 1840.
  80. W. Henry, Manchester Memoirs 1813, 2, 293-312.
  81. J. J. Berzelius, J. Phys. Chim. 1811, 73, 253-286.
  82. J. R. D. Riffault, N. M. Chompré, Ann. Chim. 1807, 63, 77-88.
  83. J. R. D. Riffault, N. M. Chompré, Ann. Phys. (Gilbert ed.) 1808, 28, 115-120.
  84. J.-B. Biot, Précis Élémentaire de Physique Expérimentale, Vol. 1, 3. ed., Deterville, Paris, 1824.
  85. A. A. de la Rive, Ann. Chim. Phys. 1825, 28, 190-209.
  86. M. Faraday, Phil. Trans. 1832, 122, 125-162.
  87. J. N. P. Hachette, Ann. Chim. Phys. 1832, 51, 72-74.
  88. J. N. P. Hachette, Ann. Phys. Chem. (Poggendorff ed.) 1833, 27, 394-397.
  89. R. Clausius, Ann. Phys. Chem. (Poggendorff ed.) 1857, 101, 338-360.
  90. R. Clausius, Phil. Mag. 1858, 15, 94-109.
  91. R. Clausius, Ann. Chim. Phys. 1858, 53, 252-256.
  92. O. Markovitch, H. Chen, S. Izvekov, F. Paesani, G. A. Voth, N. Agmon, J. Phys. Chem. B 2008, 112, 9456-9466.
  93. F. Bagnoli, R. Livi, Substantia 2018, 2, 121-134.
  94. M. Faraday, J. Sci. Arts 1816, 1, 261-262.
  95. M. Faraday, Phil. Trans. 1821, 111, 47-74.
  96. M. Faraday, Quart. J. Sci. 1823, 15, 71-74.
  97. M. Faraday, H. Davy, Phil. Trans. 1823, 113, 160-165.
  98. M. Faraday, Phil.Trans. 1825, 115, 440-466.
  99. J. C. Oersted, Ann. Phil. 1820, 16, 273-276.
  100. M. Faraday, Quart. J. Sci. 1822, 12, 74-96.
  101. M. Faraday, Quart. J. Sci. 1825, 19, 338.
  102. M. Faraday, Phil. Trans. 1832, 122, 163-194.
  103. M. Faraday, Phil. Trans. 1833, 123, 23-54.
  104. M. Faraday, Phil. Trans. 1833, 123, 507-522.
  105. M. Faraday, Phil. Trans. 1833, 123, 675-710.
  106. M. Faraday, Phil. Trans. 1834, 124, 55-76.
  107. M. Faraday, Phil. Trans. 1834, 124, 425-470.
  108. M. Faraday, Ann. Phys. Chem. (Poggendorff ed.) 1834, 31, 225-245.
  109. M. Faraday, Ann. Phys. Chem. (Poggendorf ed.) 1834, 32, 401-453.
  110. J. J. Berzelius, Jahres-Bericht über die Fortschritte der physischen Wissenschaften, Vol. 15. Jahrgang, Heinrich Laupp, Tübingen, 1836.
  111. F. A. J. L. James, The Correspondence of Michael Faraday, Institution of Electrical Engineers, London, 1991-2010.
  112. T. Martin, Being the Various Philosophical Notes of Experimental Investigation Made by Michael Faraday During the Years 1820-1862 and Bequeathed by Him to the Royal Institution of Great Britain, Vol. 1-7, George Bell & Sons, London, 1932–1936.
  113. P. L. Simon, Ann. Phys. (Gilbert ed.) 1808, 28, 277-298.
  114. M. Faraday, Phil. Trans. 1846, 136, 1-20.
  115. M. Faraday, Phil. Trans. 1838, 128, 125-168.