Vol. 6 No. 2 (2022)
Historical Articles

Capillary Electrophoresis and its Basic Principles in Historical Retrospect. Part 4. Svante Arrhenius´ Electrolyte Dissociation. From 56 Theses (1884) to Theory (1887)

Ernst Kenndler
Institute for Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
Bio
Photo of Svante Arrhenius from 1878, the year when he began his studies at the University in Uppsala. Provided by courtesy of the archives at the Royal Swedish Academy of Sciences.

Published 2022-09-01

Keywords

  • Dissociation Theory,
  • Arrhenius,
  • Electrolyte,
  • solution,
  • activity coefficient

How to Cite

Kenndler, E. (2022). Capillary Electrophoresis and its Basic Principles in Historical Retrospect. Part 4. Svante Arrhenius´ Electrolyte Dissociation. From 56 Theses (1884) to Theory (1887). Substantia, 6(2), 55-77. https://doi.org/10.36253/Substantia-1679

Abstract

Since the main interest of Svante Arrhenius, a student at Uppsala University, was the electrical conductivity of highly dilute electrolyte solutions, which had not yet been determined at the beginning of the 1880s, he decided to determine experimentally the molecular conductivities of aqueous solutions of about fifty electrolytes and their dependence on the dilution. In his dissertation, which he began in the winter of 1882/1883, he summarized his results and considerations in 56 "theses". He observed that strong acids had a high molecular conductivity, which increased only slightly with increasing dilution. Weak acids, in contrast, had low molecular conductivities, but these increased abruptly above a certain dilution. Arrhenius' innovative hypothesis was that electrolyte molecules are composed from two parts, "an active (electrolytic) and an inactive (non-electrolytic) part," with the proportion of the active part increasing with increasing dilution at the expense of the inactive part. Moreover, the electrically active part, which conducts electricity, was also the chemically active part. Arrhenius introduced the activity coefficient, later quoted as the degree of dissociation, which indicated the proportion of active molecules to the sum of active and inactive molecules. He tentatively related activity coefficient to molecular conductivity. He assumed that the higher the activity coefficients of different acids at the same equivalent concentrations, the stronger they are. Arrhenius tested his hypothesis taking the heat of neutralization of acids with a strong base measured by Thomsen and Berthelot. Strong acids developed the highest neutralization heats, i.e., the activation heat of water, since they consisted entirely of active H+ and OH- ions, which combined to inactive H2O. Weak acids developed correspondingly less. The established parallelism between the molecular conductivities of acids and their heats of neutralization was the first proof of Arrhenius' hypothesis. He relied on thermochemistry and completed his dissertation. He presented his dissertation in June 1883 and published it in 1884 to obtain his doctorate. At that time, Wilhelm Ostwald was investigating the affinities of acids to bases, i.e. the intensity of the effects of acids on the rates of reactions they cause. He took the rate constants as a measure of the relative strength of the acids. After receiving Arrhenius' thesis, he measured the acid´s molecular conductivities and found a remarkable proportionality to the reaction rate constants of the hydrolysis of methyl acetate and the inversion of cane sugar caused by them. This was the second proof of Arrhenius' hypothesis, based on the results of chemical kinetics. A memoir presented in 1885 by J. H. van 't Hoff on the analogy between the osmotic pressure of a highly dilute solution separated from the pure solvent by a semipermeable membrane and the pressure of an ideal gas containing the same number of particles as the solution led to probably the most convincing proof of the Arrhenius hypothesis. This analogy corresponded to Avogadro's well-known law, which is PV=RT. He found that the pressure for non-conductors such as glucose followed this law, but was higher for electrolytes. This deviation was accounted for by the van 't Hoff factor i, which indicates into how many particles the solute - at least partially - has dissociated, so that the modified law is PV=iRT. The factor i could be deduced from Raoult's freezing point depression, and could also be calculated using Arrhenius' degree of dissociation α. The degree of dissociation, in turn, was determined from the ratio of the conductivity of a dilute electrolyte solution and that under limiting conditions. The agreement found between the factors i determined by the two independent methods was the third proof of the Arrhenius hypothesis. There was a fourth proof, namely the additivity of physical properties. With these four nonelectrical and independent proofs, the 56 theses of Arrhenius' dissertation became the groundbreaking theory of dissociation of substances dissolved in water, which he published in 1887. In 1903 the Nobel Prize in Chemistry was awarded to him "in recognition of the extraordinary services he has rendered to the advancement of chemistry by his electrolytic theory of dissociation”.

References

  1. R. Clausius, Ann. Phys. Chem. (Pogg.) 1857, 101, 338-360.
  2. R. Clausius, Phil. Mag. 1858, 15, 94-109.
  3. R. Clausius, Ann. chim. phys. 1858, 53 [3], 252-256.
  4. E. Kenndler, Substantia 2021, 5(2), 95-118.
  5. E. Kenndler, Substantia 2022, 6(1), 77-105.
  6. S. Arrhenius, Bihang Till K. Svenska Vet.-Akad. Handlingar 1884, 8 (13), 3-63.
  7. S. Arrhenius, Bihang Till K. Svenska Vet.-Akad. Handlingar 1884, 8 (14), 3-89.
  8. S. Arrhenius, Z. phys. Chem. 1887, 1, 631–649.
  9. S. Arrhenius, in Memoirs on the Modern Theory of Solution (Ed.: H. C. Jones), Harper & Brothers, New York, London, 1888, pp. 45-66.
  10. E. Edlund, Ann. Phys. 1868, 210, 337-355.
  11. E. Edlund, Phil. Mag, 1869, 38, 169-178.
  12. E. Edlund, Phil. Mag. 1878, 6, 289-306.
  13. E. Edlund, Ann. Phys. Chem. (N. F., Wied.) 1877, 1, 161-199.
  14. E. Edlund, Ann. Phys. Chem. (N. F., Wied.) 1878, 3, 489-494.
  15. F.-M. Raoult, Compt. rend. 1882, 95, 1030-1033.
  16. S. Arrhenius, Bihang Kongl. Vetenskapsakademiens Handlingar 1883, 7, 1-36
  17. F. Kohlrausch, O. Grotrian, Götting. Nachr. 1874, 17, 405-418.
  18. F. Kohlrausch, O. Grotrian, Ann. Phys. Chem. (Pogg.) 1875, 154, 1-14.
  19. F. Kohlrausch, O. Grotrian, Ann. Phys. Chem. (Pogg.) 1875, 154, 215-239.
  20. F. Kohlrausch, O. Grotrian, Phil. Mag. 1875, 49, 417-425.
  21. F. Kohlrausch, Ann. Phys. Chem. (Pogg.) 1876, 159, 233-275.
  22. F. Kohlrausch, Götting. Nachr. 1877, 9, 181-199.
  23. F. Kohlrausch, Ann. Phys. Chem. (N. F., Wied.) 1879, 6, 145-210.
  24. F. Kohlrausch, Ann. Phys. Chem. (N. F., Wied.) 1879, 6, 1-51.
  25. F. Kohlrausch, Ann. Phys. Chem. (N. F., Wied.) 1880, 11, 653-660.
  26. R. Lenz, Ann. Phys. Chem. (Pogg.) 1877, 160, 425-435.
  27. R. Lenz, https://www.biodiversitylibrary.org/item/104844#page/1/mode/1up 1877, 23, 250-279.
  28. R. Lenz, Mém. Acad. Impér. Sci. St.-Petersbourg 1878, 26 [VII], 1-51.
  29. R. Lenz, Mém. Acad. Impér. Sci. St.-Petersbourg 1882, 30 [7], 1-64.
  30. F. Kohlrausch, Götting. Nachr. 1876, 10, 213-224.
  31. F. Kohlrausch, Ann. Phys. Chem. (Pogg.) 1878, Erg. Bd. VIII, 1-16.
  32. F. Kohlrausch, Ann. Phys. Chem. (N. F., Wied.) 1885, 26, 161-226.
  33. H. É. S.-C. Deville, Compt. rend. 1857, 45, 857
  34. E. Edlund, Ann. Phys. Chem. (Pogg.) 1875, 156, 251-278.
  35. E. Dorn, Ann. Phys. Chem. (N. F., Wied.) 1880, 9, 513-552.
  36. E. Dorn, Ann. Phys. Chem. (N. F., Wied.) 1880, 10, 46-76.
  37. E. Edlund, Ann. Phys. Chem. (N. F., Wied.) 1881, 12, 149-155.
  38. in Report of the Fifty-Sixth meeting of the British Association for the Advancement of Science, held at Birmingham in September 1886, 1886 (1887).
  39. K. F. Mohr, Lehrbuch der chemisch-analytischen Titrirmethode. Nach eigenen Versuchen und systematisch dargestellt; für Chemiker, Ärzte und Pharmaceuten, Berg- und Hüttenmänner, Fabrikanten, Agronomen, Metallurgen, Münzbeamte etc., 1 ed., Friedrich Vieweg und Sohn, Braunschweig, 1855.
  40. W. Hittorf, Ann. Phys. Chem. (Pogg.) 1859, 106, 513-586.
  41. M. Berthelot, Chimie organique fondée sur la synthèse, Vol. 1, Mallet-Bachelier, Paris, 1860.
  42. M. Berthelot, Chimie organique fondée sur la synthèse, Vol. 2, Mallet-Bachelier, Paris, 1860.
  43. M. Berthelot, La synthèse chimique, Germer Baillière, Paris, 1876.
  44. M. Berthelot, Essai de mécanique chimique fondée sur la thermochimie. Tome I. Calorimétrie, Vol. 1, Dunod, Paris, 1879.
  45. M. Berthelot, Thermochimie. Données et Lois Numériques. Tome I. Les Lois Numériques, Vol. 1, Gauthier-Villars et Fils, Paris, 1897.
  46. M. Berthelot, Thermochimie. Données et Lois Numériques. Tome II. Les Données Expérimentales, Vol. 2, Gauthier-Villars et Fils, Paris, 1897.
  47. M. Berthelot, Science et Philosophie, Calmann Lévy, Paris, 1886.
  48. M. Berthelot, Les Origines de l´Alchimie, Georges Steinheil, Paris, 1885.
  49. M. Berthelot, Collection des Anciens Alchimistes Grecs, Vol. 1-3, Georges Steinheil, Paris, 1887-1888.
  50. M. Berthelot, Histoire des sciences. La chimie au moyen âge, Vol. 1-3, Imprimerie Nationale, Paris, 1893.
  51. M. Berthelot, Essai de mécanique chimique fondée sure la thermochimie. Tome II. Mécanique, Vol. 2, Dunod, Paris, 1879.
  52. O. J. Lodge, in Report of the Fifty-Fifth meeting of the British Association for the Advancement of Science, Aberdeen, September 1885, Vol. Aberdeen, September 1885, London, 1885, pp. 723-772.
  53. T. v. Grotthuß, Ann. Phys. (N. F., Gilb.) 1819, 1, 54-70.
  54. A. W. Williamson, Phil. Mag. 1850, 37, 350-356.
  55. S. Arrhenius, Proc. Roy. Inst., 1904, 1903.
  56. P. L. Dulong, Ann. Phys. Chem. (Pogg.) 1838, 45, 461-467.
  57. G. H. Hess, Bull. scient. Acad. Impér. Sci. St.-Pétersbourg 1840, 8, 257-272.
  58. G. H. Hess, Compt. rend. 1840, 10, 759–763.
  59. H. Hess, Ann. Phys. Chem. (Pogg.) 1841, 52, 97-114.
  60. H. Hess, Ann. Phys. Chem. (Pogg.) 1841, 52, 107-114.
  61. H. Hess, Ann. Phys. Chem. (Pogg.) 1841, 53, 535-547.
  62. H. Hess, Ann. Phys. Chem. (Pogg.) 1841, 53, 499-512.
  63. H. Hess, Ann. Phys. Chem. (Pogg.) 1842, 56, 593-604.
  64. H. Hess, Ann. Phys. Chem. (Pogg.) 1842, 56, 463-479.
  65. H. Hess, Ann. Phys. Chem. (Pogg.) 1842, 57, 569-584.
  66. Abria, Ann. phys. chim. 1844, 12 [3], 167-176.
  67. P.-A. Favre, J.-T. Silbermann, Compt. rend. 1849, 28, 627-632.
  68. P.-A. Favre, J.-T. Silbermann, Compt. rend. 1847 24 1081-1090.
  69. T. Andrews, Ann. Phys. Chem. (Pogg.) 1845, 66, 31-57.
  70. T. Andrews, Ann. Phys. Chem. (Pogg.) 1848, 75, 244-255.
  71. T. Andrews, Ann. Phys. Chem. (Pogg.) 1848, 75, 27-50.
  72. T. Andrews, J. prakt. Chem. (Erdm., March.) 1850, 2, 468-493.
  73. J. Thomsen, Ann. Phys. Chem. (Pogg.) 1853, 88, 349-363.
  74. J. Thomsen, Ann. Phys. Chem. (Pogg.) 1853, 90, 261-288.
  75. J. Thomsen, Ann. Phys. Chem. (Pogg.) 1854, 92, 34-57.
  76. J. Thomsen, Ann. Phys. Chem. (Pogg.) 1854, 91, 83-104.
  77. M. Berthelot, Ann. chim. phys. 1869, 18 [4], 5-108.
  78. J. Thomsen, Ann. Phys. Chem. (Pogg.) 1869, 138, 65-102.
  79. J. Thomsen, Ann. Phys. Chem. (Pogg.) 1869, 138, 201-213.
  80. J. Thomsen, Ann. Phys. Chem. (Pogg.) 1869, 138, 497-514.
  81. J. Thomsen, Ann. Phys. Chem. (Pogg.) 1870, 140, 88-114.
  82. J. Thomsen, Ann. Phys. Chem. (Pogg.) 1870, 140, 497-540.
  83. J. Thomsen, Ann. Phys. Chem. (Pogg.) 1870, 139, 193-224.
  84. J. Thomsen, Thermochemische Untersuchungen. I. Neutralisation und verwandte Phänomene, Vol. 1, J. A. Barth, Leipzig, 1882.
  85. J. Thomsen, Thermochemische Untersuchungen. II. Metalloide, Vol. 2, J. A. Barth, Leipzig, 1882.
  86. J. Thomsen, Thermochemische Untersuchungen: III. Wässrige Lösung und Hydratbildung. Metalle, Vol. 3, J. A. Barth, Leipzig, 1883.
  87. J. Thomsen, Thermochemische Untersuchungen. IV. Organische Verbindungen, Vol. 4, J. A. Barth, Leipzig, 1886.
  88. in Report of the Fifty-Sixth meeting of the British Association for the Advancement of Science, held at Birmingham in September 1886, 1886 (1887).
  89. O. J. Lodge, Report of the Fifty-Sixth Meeting of the British Association for the Advancement of Science, Birmingham, September 1886 1886, 56, 389-412.
  90. W. Ostwald, Lebenslinien. Eine Selbstbiographie, Vol. 1-3, Klasing, Berlin, 1926/27.
  91. W. Ostwald, J. prakt. Chem. 1879, 19 [2], 468-484.
  92. W. Ostwald, J. prakt. Chem. 1880, 22 [2], 251-260.
  93. W. Ostwald, J. prakt. Chem. (N. F., Kolbe, Meyer) 1881, 23, 517-536.
  94. W. Ostwald, J. prakt. Chem. (N. F., Kolbe, Meyer) 1881, 24, 486-497.
  95. W. Ostwald, J. prakt. Chem. (N. F., Kolbe, Meyer) 1881, 23, 209-227.
  96. W. Ostwald, J. prakt. Chem. (N. F., Kolbe) 1877, 16, 385-423.
  97. W. Ostwald, J. prakt. Chem. (N. F., Kolbe) 1878, 18, 328-371.
  98. W. Ostwald, J. prakt. Chem. (N. F., Kolbe, Meyer) 1883, 27, 1-39.
  99. W. Ostwald, J. prakt. Chem. (N. F., Kolbe, Meyer) 1883, 28, 449-495.
  100. M. Berthelot, L. Péan de St. Gilles, Recherches sur les affinités. De la formation et de la décomposition des éthers, Mallet-Bachelier, Paris, 1862.
  101. M. Berthelot, L. Péan de St. Gilles, Ann. chim. phys. 1862, 65 [3], 385-422.
  102. M. Berthelot, L. Péan de St. Gilles, Ann. chim. phys.. 1862, 66 [3], 5-110.
  103. M. Berthelot, L. Péan de St. Gilles, Ann. chim. phys. 1863, 68 [3], 225-359
  104. W. Ostwald, J. prakt. Chem. (N. F.; Kolbe, Meyer) 1884, 29, 385-408.
  105. L. Wilhelmy, Versuch einer mathematisch-physikalischen Wärme-Theorie, Akademische Anstalt für Literatur und Kunst, Heidelberg, 1851.
  106. L. Wilhelmy, Ann. Phys. Chem. (Pogg.) 1850, 81, 413-428.
  107. L. Wilhelmy, Ann. Phys. Chem. (Pogg.) 1850, 81, 499-526.
  108. J. Löwenthal, E. Lenssen, J. prakt. Chem. 1862, 85, 321-358.
  109. J. Löwenthal, E. Lenssen, J. prakt. Chem. 1862, 85, 401-416.
  110. W. Ostwald, J. prakt. Chem. (N. F.; Kolbe, Meyer) 1884, 30, 93-95
  111. G. Arrhenius, K. Caldwell, S. Wold, in 2008 Annual Meeting of the Royal Swedish Academy of Engineering Sciences, The Royal Swedish Academy of Engineering Sciences, 2008, pp. 6-44.
  112. S. Arrhenius, Z. phys. Chem. 1888, 2, 284-295.
  113. M. Traube, Arch. Anatom. Physiol. 1867, 87-165.
  114. M. Traube, Gesammelte Abhandlungen, Mayer & Müller, Berlin, 1899.
  115. W. Pfeffer, Osmotische Untersuchungen. Studien zur Zellmechanik, 1 ed., Wilhelm Engelmann, Leipzig, 1877.
  116. J. H. van ´t Hoff, Kongliga Svenska Vetenskaps-Akademiens Handlingar 1884-1885, 21, 1-58.
  117. J. H. van ´t Hoff, Archives Néerlandaises 1886, 20, 29-302.
  118. J. H. van ’t Hoff, Z. phys. Chem. 1887, 1, 481–508.
  119. M. Planck, Z. phys. Chem. 1887, 1, 577-582.
  120. M. Planck, Z. phys. Chem. 1890, 6, 187-189.
  121. L. Boltzmann, Z. phys. Chem. 1890, 6, 474-480.
  122. F. Kohlrausch, Ann. Phys. Chem. (N. F., Wied.) 1885, 24, 48-52.
  123. C.-A. Valson, Compt. rend. 1871, 73, 441-443.
  124. J. H. Gladstone, Phil. Mag. 1868, 36 (4), 313-316.
  125. C.-A. Valson, Compt. rend. 1872, 74, 103-105.
  126. F.-M. Raoult, Ann. chim. phys. 1885, 4 [6], 401-430.
  127. M. Guldberg, Compt. rend. 1870, 70, 1349-1352.
  128. H. de Vries, Pringsheims Jahrbücher für wiss. Botanik 1884, 14, 427-601.
  129. W. Ostwald, Z. phys. Chem. 1888, 2, 270–283.
  130. W. Ostwald, Z. phys. Chem. 1888, 2, 36-37.
  131. W. Ostwald, W. Nernst, Z. phys. Chem. 1889, 3, 120-130.
  132. S. Arrhenius, Z. phys. Chem. 1887, 1, 110-133.
  133. S. Arrhenius, Z. phys. Chem. 1887, 1, 285-298.
  134. S. Arrhenius, Ann. Phys. Chem. (N. F., Wied.) 1887, 30, 51–76.
  135. S. Arrhenius, Ann. Phys. Chem. (Wied.) 1887, 32, 545.
  136. S. Arrhenius, Z. phys. Chem. 1888, 2, 491-505.
  137. S. Arrhenius, Z. phys. Chem. 1889, 4 96-116.
  138. S. Arrhenius, Z. phys. Chem. 1889, 4, 226-248.
  139. S. Arrhenius, Z. phys. Chem. 1889, 3, 115-119.
  140. S. Arrhenius, Phil. Mag. 1889, 28 [5], 30-38.
  141. K. J. Laidler, Can. J. Chem. 1997, 75, 1552-1565.