ElectroPhotonic Analysis (EPA) of tap water droplets versus hydro-alcoholic solutions

Published 2025-10-14
Keywords
- Electrophotonic analysis,
- Corona discharge,
- Validation,
- Reproducibility,
- Discriminatory potential
- Photon electrochemistry ...More
How to Cite
Copyright (c) 2025 Marc Henry, Pierre Dorfman, Michel Van Wassenhoven, Martine Goyens

This work is licensed under a Creative Commons Attribution 4.0 International License.
Abstract
Aim: The lack of precision of validated electrochemical identification methods and the limited detection of compounds at low concentrations by spectrometric methods are well known. Physics has provided a strong theoretical background, and modern technologies allow the development of electro photonic analytical devices that aim to provide greater precision in the detection of compounds, even at low concentrations. This original article provides a new experimental and theoretical insight into chemistry.
Method: This paper describes the theory and the technical aspects of the electro photonic analysis method. This technology is tested on samples of tap water droplets compared to hydro-alcoholic solutions (ethanol 62% m/m).
Results: Using repeated measurements on the same tap water and ethanolic solutions, we demonstrate the reproducibility of the method. This method can now be systematically double-blind tested on a variety of samples.
References
- [1] Emiliano Brini, Christopher J. Fennell, Marivi Fernandez-Serra, Barbara Hribar-Lee, Miha Luksǐc, Ken A. Dill, "How Water’s Properties Are Encoded in Its Molecular Structure and Energies", Chem. Rev., 2017, 117, 12385-12414.
- [2] P. Lo Nostro & B. W. Ninham, « Aqua Incognita: Why Ice Floats on Water and Galileo 400 Years on », Connor Court Pub., Ballarat (2014).
- [3] Marc Henry, « The state of water in living systems: from the liquid to the jellyfish ». Cell Mol. Biol. (2005), 51: 677-702.
- [4] Marc Henry, "Water and its mysteries". Inference : Int Rev. Sci., 4, n°3, March 2019
- https://inference-review.com/article/water-and-its-mysteries.
- [5] Marc Henry, “Water and the periodic table”, Susbtantia (2019), 3(2) Suppl. 3: 9-11. doi: 10.13128/Substantia-701.
- [6] I. Bono, E. Del Giudice, L. Gamberale, M. Henry, « Emergence of the Coherent Structure of Liquid Water », Water (2012), 4, 510-532.
- [7] S. Sen, K. S. Gupta, J. M. D. Coey. « Mesoscopic structure formation in condensed matter due to vacuum fluctuations ». Phys. Rev. B (2015), 92 :155115.
- [8] Marc Henry, « The topological and quantum structure of zoemorphic water », in Aqua Incognita: Why Ice Floats on Water and Galileo 400 Years on, P. Lo Nostro & B. W. Ninham Eds, Connor Court Pub., Ballarat (2014), chap IX, 197-239.
- [9] L. Montagnier; J. Aïssa; A. Capolupo; T. J. A. Craddock; P. Kurian; C. Lavallée; A. Polcari; P. Romano; A. Tedeschi; G. Vitiello, « Water bridging dynamics of polymerase chain reaction in the gauge theory paradigm of quantum fields », Water (MDPI) (2017), 9 : 339-357
- [10] B. Qing Tang; Tongju Li; Xuemei Bai; Minyi Zhao; Bing Wang; Glen Rein; Yongdong Yang; Peng Gao; Xiaohuan Zhang; Yanpeng Zhao; Qian Feng; Zhongzhen Cai; Yu Chen, « Rate limiting factors for DNA transduction induced by weak electromagnetic field », Electromagnetic Biology and Medicine (2019), 38(1) : 55-65.
- [11] Ignatov, I.; Marinov, Y.G.; Vassileva, P.; Gluhchev, G.; Pesotskaya, L.A.; Jordanov, I.P.; Iliev, M.T. Nonlinear Hydrogen Bond Network in Small Water Clusters: Combining NMR, DFT, FT-IR, and EIS Research. Symmetry 2025, 17, 1062.
- [12] Tomaz Urbic, Ions increase strength of hydrogen bond in water, Chemical Physics Letters, Volumes 610–611, 2014, Pages 159-162,
- [13] M. Henry, « Consciousness, Information, Electromagnetism and Water », Substantia (2020), 4(1): 23-36.
- [14] Marc Henry, « Fisica y quimica de las altas diluciones », Rev. Med. Homeopat. (2017), 10(2) : 41-52.
- [15] M. Henry, “The physics and chemistry of high dilutions”, VIIth National Congress of Homeopathy, San Sebastian, Spain, May, 6-8, (2016). Reprinted in “Homeopathy and You” (2019), Vol. 5, n°2 March, n°3 April.
- [16] C. Soares, J.A. Tenreio Machado, Antonio M. Lopes, E. Vieira, C. Delerue-Matos, “Electrochemical impedance spectroscopy characterization of beverages”, Food Chemistry, (2020), 302: 125345.
- [17] E. B. van de Kraats, J. S. Muncan, R. N. Tsenkova (2019), “Aqua-photomics - Origin, concept, applications and future perspectives”, Substantia 3(2) Suppl. 3: 13-28. doi: 10.13128/ Substantia-702.
- [18] Maria Olga Kokornaczyk, Sandra Würtenberger, Stephan Baumgartner, (2020) « Impact of succussion on pharmaceutical preparations analyzed by means of patterns from evaporated droplets », Sci Rep., 10, 570. https://doi.org/10.1038/s41598-019-57009-2.
- [19] C. Cimpean, C. Hotiu, “Sensitive crystallization – a valuable method for analyzing informational quality of food supplements” (2014), Bull. Transilvania University of Brasov, Series II, 7(56) : 85-92.
- [20] Vittorio Elia, Elena Napoli, Roberto Germano, Valentina Roviello, Rosario Oliva, Marcella Niccoli, Angela Amoresano, Maria Toscanesi, Marco Trifuoggi, Antonio Fabozzi, Tamar A. Yinnon, "Water perturbed by cellophane: comparison of its physicochemical
- properties with those of water perturbed with cotton wool or Nafon", J. Thermal Analysis Calorimetry (2020), https://doi.org/10.1007/s10973-020-10185-0.
- [21] G. Vieilledent, R. Herren, M. Henry, V. Morard, Quynh Nhu Xuan Trinh Kramer, « New applications of Corona discharges for photonics characterization of inert or living matter », http://www.electrophotonique.com/news/, BioEM2014, Cape Town, South Africa, Jun 08 - 13, 2014.
- [22] Y. Creyghton, E. Veldhuizen & W.R. Rutgers. Electrical and Optical Study of pulsed Positive Corona. In Non-Thermal Plasma Techniques for Pollution Control. 205-230, 1993.
- [23] Goldman, M. & Goldman, A. & Sigmond, R.. The corona discharge, its properties and specific uses. Pure and Applied Chemistry 57. 1353-1362, 1985.
- [24] Leonard Loeb. Electrical coronas: their basic physical mechanisms. University of California Press Berkeley and Los Angeles 1965 ISBN 978-0520007659.
- [25] Kirlian, S.D. Kirlian W. C. (Fotografirovanie i wizualnoje nabludenie pri posredstwie took wysokiej czastoty. ̄urnal naucznoj i prok3adnoj fotografii i kinematografii), « The photography and visualisation of matter by the means of high frequency current », Russ. J. Sci. Appl. Photogr. Cinematogr. (1961), 6 : 397-403.
- [26] William A. Tiler, « Are psychoenergetic pictures possible ? », New Scientist (1974), 25 April, 160-163.
- [27] J. O. Pehek, H. J. Kyler, D. L. Faust, « Image Modulation in Corona Discharge Photography », Science (1976), 194 : 263-270.
- [28] Andrew A. Marino, Robert O. Becker, Betsy Ullrich, Jon Hurd, « Kirlian photography: potential use in diagnosis », Psychoenergetics systems (1979), 3 : 47-54.
- [29] Arleen J. Watkins, William S.Bickel. « A study of the Kirlian effect », Skeptical Inquirer (1986), 10(3): 244-257, Spring.
- [30] Arleen J. Watkins, William S.Bickel. « The Kirlian technique: controlling the wild cards», Skeptical Inquirer (1989), 13(2): 172-184, Winter.
- [31] J. G. Gadsby, « Kirlian photography diagnosis – a recent study », Complementary Therapies in Medicine (1993), 1 : 179-184.
- [32] John Opalinski, « Kirlian-type images and the transport of thin-film materials in high-voltage corona discharges », J. Appl. Phys. (1979), 50(1) : 498-504.
- [33] K. G. Korotkov, P. Matravers, D. V. Orlov, B. O. W. Williams, « Application of electro photon capture (EPC) analysis based on gas discharge visualization (GDV) technique in medicine : a systematic review », J. Alternative and Complementary Med. (2010), 16(1) : 13-25.
- [34] Izabela L. Cieseilska, « Images of corona discharges as a source of information about the influence of textiles on humans », AUTEX Research J. (2009), 9(1) : 36-41.
- [35] K. Korotkov, D. Orlov, « Analysis of stimulated electro photonic glow of liquids », Water (2010), 2 : 29-43.
- [36] K. G. Korotkov, D. A. Korotkin, « Concentration dependence of gas discharge around drops of inorganic electrolytes », J. Applied Phys. (2001), 89(9) : 4732-4736.
- [37] M. Skarja, M. Berden, I. Jerman, « Influence of ionic composition of water on the corona discharge around water drops », J. Applied. Phys. (1998), 84(5) : 2436-2442.
- [38] Lou Jost, « Entropy and diversity », Oikos (2006), 113(2), 363-375.
- [39] E. Marcon, « Mesure de la biodiversité et de la structuration spatiale de l’activité économique par l’entropie », Revue Economique, Presses de Sciences Po (2019), 70(3), pp.305. 10.3917/reco.703.0305. hal-02147526.
- [40] T. O. Kvalseth, « Evenness indices once again : critical analysis of properties », Kvalseth SpringerPlus (2015) 4 : 232.
- [41] A. González-Díez, J.A. Barreda-Argüeso, L. Rodríguez-Rodríguez, J. Fernández-Lozano. The use of filters based on the Fast Fourier Transform applied to DEMs for the objective mapping of karstic features. Geomorphology. Volume 385, 2021,
- [42] Gerhard X. Ritter, Joseph N. Wilson, « Handbook of computer vision algorithms in image algebra », Second Edition (2001), CRC Press, Boca Raton.
- [43] G. Ekman, “Weber’s Law and Related Functions“, Journal of Psychology (1959), 47 : 343-352
- [44] Sergio Cesare Masin, Verena Zudini, Maura Antonelli, « Early alternative derivations of Fechner’s law », J. Hist. Behavorial Sci. (2009), 45(1) : 56-65.
- [45] Werner Frei, « Image enhancement by histogram hyperbolization », Computer Graphics and Image Processing (1977), 6 : 286-294.
- [46] Daniel T. Cobra, José D. e Menezes Costa, F. Marcelo, « Realce de Imagens Através de Hiperbolizaçao do histograma », Anais do SINGRAPI (1992), pp. 63-71.
- [47] Salem Saleh Al-amri, N. V. Kalyankar, S. D. Khamitkar, « Linear and non-linear contrast enhancement image », Int. J. Computer Sci. Network Security (2010), 10(2) : 139-143.
- [48] Stephen M. Pizer, John D. Austin, John R. Perry, Hal D. safrit, « Adaptive histogram equalization for automatic contrast enhancement of medical images », Proc. SPIE 0626, Application of Optical Instrumentation in Medicine XIV and Picture Archiving and Communication Systems, (12 June 1986); https://doi.org/10.1117/12.975399.
- [49] Adam Huang, Chung-Wei Lee, Hon-Man Liu, « Rolling ball sifting algorithm for the augmented visual inspection of carotid bruit auscultation », Scientific Reports (2016), 6 : 30179.
- [50] C. A. Schneider, W. S. Rasband, K. W. Eliceiri, "NIH Image to ImageJ: 25 years of image analysis", Nature methods (2012), 9(7): 671-675.
- [51] Chris Glasbey, Gerie van der Heijden, Vivian F. K. Toh, Alision Gray, « Colour display for categorical images », Color research and application (2007), 32(4) : 304-309.
- [52] Mhemet Sezgin, Bülent Sankur, « Survey over image thresholding techniques and quantitative performance evaluation », J. Electronic Imaging (2004), 13(1) : 146-165.
- [53] W. Doyle, "Operation useful for similarity-invariant pattern recognition", Journal of the Association for Computing Machinery (1962), 9 : 259-267.
- [54] J. M. S. Prewitt, M. L. Mendelsohn, "The analysis of cell images," Annals New York Acad. Sci. (1966), 128 : 1035-1053.
- [55] G. W. Zack, W. E. Rogers, S. A. Latt, S. A., « Automatic Measurement of Sister Chromatid Exchange Frequency », Journal of Histochemistry and Cytochemistry (1977), 25(7) : 741-753.
- [56] T. W. Ridler, S. Calvard, « Picture thresholding using an iterative selection method », IEEE Trans. on Systems, Man and Cybernetics (1978), SMC-8 : 630-632.
- [57] H. J. Trussel, « Comments on ‘Picture thresholding using an iterative selection method’ », IEEE Trans. on Systems, Man and Cybernetics (1979), SMC-9 : 311.
- [58] A. Magid, R. Rotman, A. M. Weiss, , « Comment on ‘Picture thresholding using an iterative selection method’ », IEEE Trans. on Systems, Man and Cybernetics (1990), 20 : 1238-1239.
- [59] Nobuyuki Otsu, « A threshold selection method from gray-level histogram », IEEE Trans. on Systems, Man and Cybernetics (1979), SMC-9 : 62-66.
- [60] Wen-Hsiang Tsai, « Moment-preserving thresholding: a new approach », Computer Vision, Graphics and Image Processing (1985), 29 : 377-393.
- [61] J. N. Kapur, P. K. Sahoo, A. K. C. Wong, "A New Method for Gray-Level Picture Thresholding Using the Entropy of the Histogram", Graphical Models and Image Processing. (1985), 29(3): 273-285.
- [62] J. Kittler, J. Illingworth, "Minimum error thresholding," Pattern Recognition (1986) : 19 : 41-47.
- [63] C. H. Li, C. K. Lee, « Minimum cross entropy thresholding », Pattern Recognition (1993), 26(4) :617-625.
- [64] C. H. Li, P. K. S. Tam, « An iterative algorithm for minimum cross entropy thresholding », Pattern Recognition Letters (1998) 771-776.
- [65] C. A. Glasbey, "An analysis of histogram-based thresholding algorithms", CVGIP: Graphical Models and Image Processing (1993), 55(6) : 532-537.
- [66] A. G. Shanbhag, "Utilization of Information Measure as a Means of Image Thresholding", Graphical Models and Image Processing (1994), 56(5): 414-419.
- [67] J. C. Yen, F. J. Chang F.J., S. Chang, "A New Criterion for Automatic Multilevel Thresholding", IEEE Trans. on Image Processing (1995), 4(3): 370-378.
- [68] L.-K. Huang, M.-J. J. Wang, "Image Thresholding by Minimizing the Measures of Fuzziness", Pattern Recognition (1995), 28(1): 41-51.
- [69] P. Sahoo, C. Wilkins, J. Yeager, ‘‘Threshold selection using Renyi’s entropy,’’, Pattern Recognition (1997), 30 : 71-84.
- [70] J. Bernsen, "Dynamic Thresholding of Grey-Level Images", Proc. of the 8th Int. Conf. on Pattern Recognition (1986), pp. 1251-1255.
- [71] Can Eyupoglu, « Implementation of Bernsen’s locally adaptive binarization method for gray scale images », The Online Journal of Science and Technology (2017), 7(2) : 68-72.
- [72] W. Niblack, "An introduction to Digital Image Processing", Prentice-Hall (1986), Englewood Cliffs, New Jersey, pp. 115-116.
- [73] J. Sauvola and M. Pietaksinen, "Adaptive document image binarization", Pattern Recognition (2000), 33 : 225–236.
- [74] Neerad Phansalkar, Sumit More, Ashish Sabale, Madhuri Joshi, "Adaptive local thresholding for detection of nuclei in diversity-stained cytology images", International Conference on Communications and Signal Processing (2011), 218-220.
- [75] Andreas E. Savakis, "Adaptive document image thresholding using foreground and background clustering", Proceedings of International Conference on Image Processing, Intl. Conf. Image Process. ICIP’98, Chicago, October (1998).
- [76] Duong Anh Duc, Tran Le Hong, Tran Duc Duan, “Optimizing speed for adaptative local thresholding algorithm using dynamic programming, “The 7th International Conference on Electronics, Information and Communications (ICEIC’04), (2004), 1 : 438-441.
- [77] Stephen B. Gray, « Local properties of binary images in two dimensions », IEEE Transactions on Computers (1971), C20 : 551-561.
- [78] Luren Yang, Fritz Albregtsen, Tor Lonnestad, Per Grottum, « Methods to estimate areas and perimeters of blob-like objects : a comparison », IAPR Workshop on Machine Vision Applications (1994), Dec. 13-15, pp. 272-276.
- [79] P. L. Rosin, "Measuring Shape: Ellipticity, Rectangularity, and Triangularity", Machine Vision and Applications (2003) 14: 172-184.
- [80] R. Haralick and L. Shapiro, Computer and Robot Vision. Reading, Mass.: Addison-Wesley, 1992.
- [81] Ming_kuei Hu, « Visual pattern recognition by moments invariants », IRE Transactions on Information Theory (1962), Februrary, pp. 179-187.
- [82] Jan Flusser, Tomas Suk, « Pattern recognition by affine moment invariants », Pattern Recognition (1993), 26(1) : 167-174.
- [83] Jan Flusser, « On the independence of rotation moments invariants», Pattern Recognition (2000), 33: 1405-1410.
- [84] Jan Flusser, Tomas Suk, « Rotation moments invariants for recognition of symmetric objects », IEEE Transactions on Image Processing (2006), 15(12) : 3784-3790.
- [85] H. Freeman, "On the Encoding of Arbitrary Geometric Configurations", IRE Transactions on Electronic Computers (1961), 10: 260-268.
- [86] A. M. Andrew, "Another Efficient Algorithm for Convex Hulls in Two Dimensions", Info. Proc. Letters (1979), 9: 216-219.
- [87] G. T. Toussaint, "Solving Geometric Problems with the Rotating Calipers" Proc. of the IEEE MELECON'83 Conf. (1983), Athens, Greece, May, pp. 1-8.
- [88] J. Kilday F. Palmieri F., M. D. Fox, "Classifying Mammographic Lesions Using Computerized Image Analysis" IEEE Trans. on Medical Imaging (1993), 12(4): 664-669.
- [89] L. M. Bruce, M. Kallergi, "Effects of Image Resolution and Segmentation Method on Automated Mammographic Mass Shape Classification", Proc. of the SPIE (1999), 3661: 940-947.
- [90] L. Gupta, M. D. Srinath, « Contour sequence moments for the classification of closed planar shapes », Pattern Recognition (1987), 20(3) : 267-272.
- [91] Andrew Fitzgibbon, Maurizio Pilu, Robert B. Fisher, « Direct least square fitting of ellipses », IEEE transactions on Pattern Analysis and Machine Intelligence (1999), 21(5) : 476-480.
- [92] B. Peirce, « Criterion for the rejection of doubtful observations », The Astronomical Journal (1852), 45 : 161-163.
- [93] B. A. Gould Jr., « On Peirce’s criterion for the rejection of doubtful observations, with tables for facilitating its application », The Astronomical Journal (1855), 83 : 81-87.
- [94] K. A. Sankpal, « A Review on Data Normalization Techniques ». International Journal of Engineering Research & Technology (June-2020),Vol. 9 Issue 06 : 1438-1441.