Vol. 5 No. 1 (2021)
Research Articles

Thermodynamics of Life

Marc Henry
Laboratoire de Chimie Moléculaire de l'Etat Solide, Université de Strasbourg, France

Published 2021-03-01


  • entropy,
  • life,
  • death,
  • thermodynamics,
  • irreversibility,
  • heat,
  • time
  • ...More

How to Cite

Henry, M. (2021). Thermodynamics of Life. Substantia, 5(1). https://doi.org/10.36253/Substantia-959


Biology is currently plagued by several fossil concepts that may be responsible for the current stagnation in medicine. Through a careful screening of the origins of thermodynamics, such fossils concepts have been identified: assumption that heat is a form of energy, assimilation of entropy to disorder, assimilation of death to states of maximum entropy, assimilation of ATP to the energy currency of living cells, non-recognition of entropy as a state function of the whole universe, belief that free energies are another kind of energy, self-referencing in the definition of life, ignorance of basic principles of quantum physics and more particularly of the importance of intrinsic spin, confusion between three different forms of reversibility, non-recognition that irreversibility is at the heart of living systems. After stowing of these concepts in the cabinet of useless and nasty notions, a fresh new look is proposed showing how life is deep-rooted trough the entropy concept in quantum physics on the one hand and in cosmology on the other hand. This suggests that life is not an emergent property of matter, but rather that it has always been a fundamental property of a universe filled with particles and fields. It is further proposed to dismiss the first (energy = heat + work) and third laws (entropy decreases to zero at zero Kelvin) of thermodynamics, retaining only the clear Boltzmann's definition of entropy in terms of multiplicity of microstates ?, S = kB×Ln ?, and the second law in its most general form applicable to any kind of macrostates: ?Suniv ? 0. On this ground, clear definitions are proposed for life/death, healthiness/illness and for thermodynamic coupling. The whole unfolding of life in the universe: Big Bang ? Light ? Hydrogen ? Stars ? Atoms ? Water ? Planets ? Metabolism ? Lipids ? RNA's ? Viruses ? Ribosome ? Proteins ? Bacteria ? Eukaryote ? Sex ? Plants ? Animals ? Humans ? Computers ? Internet, may then be interpreted as a simple consequence of a single principle: ?Suniv ? 0. We thus strongly urge biologists and physicians to change and adapt their ideas and vocabulary to the proposed reformulation for a better understanding of what is life and as a consequence for better health for living beings.


  1. F. Hermann, G. Job, “The historical burden on scientific knowledge”, Eur. J. Phys., (1996), 17: 159-163.
  2. Marc Henry, “Consciousness, information, electromagnetism and water”, Substantia (2020), 4(1): 23-36.
  3. Albert Szent-Györgyi, “The living state with observations on cancer”, Academic Press, New-York (1972).
  4. Erwin Schrödinger, “What is Life? The Physical Aspect of the Living Cell”, Cambridge University Press (1944).
  5. Linus Pauling, “Schrödinger’s contribution to chemistry and biology”, in Schrödinger: Centenary celebration of a Polymath, C. W. Kilmister Ed., Cambridge University Press (1987), Cambridge, pp. 225-233.
  6. Max F. Perutz “Erwin’s Schrödinger What is Life and Molecular Biology”, in Schrödinger: Centenary celebration of a Polymath, C. W. Kilmister Ed., Cambridge University Press (1987), Cambridge, pp. 234-251.
  7. Freeman Dyson, “Origins of Life”, Second edition, Cambridge University Press, Cambridge (1999).
  8. Marc Henry, Laurent Schwartz, « Entropy export as the driving force of evolution », Substantia (2019), 3(2) Suppl.: 29-56.
  9. Avinash Patel, Liliana Malinovska, Shambaditya Saha, Jie Wang, Simon Alberti, Yamuna Krishnan, Anthony A. Hyman, “ATP as a biological hydrotrope”, Science (2017), 356, 753-756.
  10. E. M. Burbidge, G. R. Burbidge, W. A. Fowler, F. Hoyle, “Synthesis of the elements in stars”, Rev. Mod. Phys. (1957), 29: 547-650.
  11. Zita Martins, “The nitrogen heterocycle content of meteorites and their significance for the origin of life”, Life, (2018) 8: 28.
  12. Richard N. Boyd, Toshitaka Kajino, Takashi Onaka, “Supernovæ, Neutrinos and the chirality of amino acids”, Int. J. Mol. Sci., (2011), 12 : 3432-3444.
  13. Luke Leman, Leslie Orgel, M. reza Ghadiri, “Carbonyl sulfide-mediated prebiotic formation of peptides”, Science (2004), 306: 283-286.
  14. Marianna Karamanou, George Androutsos, “Antoine-Laurent de Lavoisier (1743–1794) and the birth of respiratory physiology”, Thorax (2013), 68:978–979.
  15. Count Rumford, “An Experimental Inquiry Concerning the Source of Heat which is Excited by Friction”, Phil Trans. (1798), 88: 80-102.
  16. Nicolas Léonard Sadi Carnot, “Réflexions sur la puissance motrice du feu et sur les machines propres à developer cette puissance”, Bachelier, Paris (1824). “Reflections on the motive power of heat”, John Wiley & Sons, London (1897).
  17. Henry Smith Williams, “The Century's Progress in Physics,” Harper's New Monthly Magazine (1897), 95(566): 258-259.
  18. James Prescott Joule, William Thomson, “XV. On the thermal effects of fluids in motion.- Part II”, Phil. Trans. Roy. Soc. (1854), 144: 321-364.
  19. Georg Job, Timm Lankau, “How harmful is the first law”, Ann. N. Y. Acad. Sci. (2003), 988: 171-181.
  20. Klaus Ruedenberg, “An approximate relation between orbital SCF energies and total SCF energy in molecules”, J. Chem. Phys. (1977), 55(1): 375-376.
  21. Etsuo Niki, “Oxidative stress and antioxidants: Distress or eustress?”, Archives of Biochemistry and Biophysics (2016), 595: 19-24.
  22. Emmy Noether, “Invariante Variationsprobleme,” Nachr. d. König. Gesellsch. d. Wiss. zu Göttingen, Math-phys. Klasse (1918), 235–257. M. A. Tavel’s English translation “Invariant variation problem”, Transport Theory and Statistical Physics (1971), 1(3): 183–207.
  23. Robert C. Allen, “Role of oxygen in phagocyte microbicidal action”, Environmental Health Perspectives, 102, Suppl. 10: 202-208.
  24. Igor Novak, “The Microscopic Statement of the Second Law of Thermodynamics”, J. Chem. Educ. (2003), 80 : 1428-1431.
  25. E. T. Jaynes, “The evolution of Carnot’s principle”, in Maximum-Entropy and Bayesian Methods in Science and Engineering (Vol. 1), Gary J. Erickson & C. Ray Smith Eds, Kluwer Academic Publishing (1988), pp. 267-281.
  26. Rudolf Clausius, « Ueber eine veränderte Form des zweiten Hauptsatzes der mechanischen Wärmetheoriein », Annalen der Physik und Chemie (1854), 93: 481–506.
  27. R. J. Tykodi, “Spontaneity, accessibility, irreversibility, useful work”, J. Chem. Educ. (1995) 72: 103-112.
  28. Ernst Mach, "The science of mechanics", translated by Thomas J. McCormack, Second Ed., The Open Court Publishing Co., Chicago (1902), pp. 232-233 & 546.
  29. Albert Einstein, “Sidelights on Relativity”, translated by: G. B. Jeffery and W. Perret, Methuen & Co., London (1922), pp. 23-24.
  30. R. G. Woolley, “Must a molecule have a shape?”, J. Am. Chem. Soc. (1978), 100(4): 1073-1078.
  31. Robert M. Rosenberg, “From Joule to Caratheodory and Born: a conceptual evolution of the first law of thermodynamics”, J. Chem. Educ. (2010), 87: 691-693.
  32. Henri Poincare?, “Science and Hypothesis”, chapter VIII, Walter Scott Pub. Co. Ltd., New York (1905), pp. 147- 148.
  33. Max Planck, “Ueber das Gesetz der Energieverteilung im Normalspectrum”, Ann. Phys. (1901), 309(3): 553–63.
  34. Ted H. Yu, “Teaching thermodynamics with the quantum volume”, J. Chem. Educ. (2020) 97: 736-740.
  35. H. M. Weiss, “Developing an intuitive understanding of free energy”, J. Chem. Educ. (2001), 78: 1362-1364.
  36. Robert M. Rosenberg, Irving M Klotz, “Spontaneity and the equilibrium constant: advantages of the Planck function”, J. Chem. Educ. (1999), 76: 1448-1451.
  37. Gilbert N. Lewis, Merle Randall, “Thermodynamics and the free energy of chemical substances”, McGraw-Hill Book Co., New York (1923).
  38. Laurence E. Strong, H. Frank Halliwell, “An alternative to free energy for undergraduate instruction”, J. Chem. Educ. (1970), 47: 347-352
  39. Pavel Kroupa, Carsten Weidner, Jan Pflamm-Altenburg, Ingo Thies, Jörg Dabringhausen, Michael Marks, Thomas Maschberger, "The Stellar and Sub-Stellar Initial Mass Function of Simple and Composite Populations", T.D. Oswalt, G. Gilmore (eds.), Planets, Stars and Stellar Systems. Volume 5: Galactic Structure and Stellar Populations, Springer, Dordrecht (2013), pp. 115-242.
  40. Laura L. Watkins, Roeland P. van der Marel, Sangmo Tony Sohn, N. Wyn Evans, "Evidence for an Intermediate-mass Milky Way from Gaia DR2 Halo Globular Cluster Motions", The Astrophysical Journal (2019), 873:118 (13pp).
  41. Christopher J. Conselice, Aaron Wilkinson, Kenneth Duncan, Alice Mortlock, "The evolution of galaxy number density at z < 8 and its applications", The American Astronomical Society (2016), 830(2): 83.
  42. Asantha Cooray, "Extragalactic Background Light Measurements and Applications", R. Soc. Open Sci. (2016), 3(3): 150555.
  43. E. T. Jaynes, “Gibbs vs Boltzmann Entropies”, Am. J. Phys. (1965), 33(5): 391-398.
  44. E. T. Jaynes, "The Minimum Entropy Production Principle", Annual Review of Physical Chemistry (1980), 31: 579-601.
  45. E. T. Jaynes, “Clearing up mysteries – The original goal”, in Maximum Entropy and Bayesian Methods, J. Skilling (Ed.), Kluwer Academic Publishers (1988), Dordrecht-Holland, pp. 1-27.
  46. Rudolf Virchow, « Die Cellularpathologie in ihrer Begründung auf physiologische und pathologische Gewebelehre », Berlin (1859), p. 25.
  47. Jean-Pierre Gerbaulet, Marc Henry, "The ‘Consciousness- Brain’ relationship", Substantia (2019), 3(1): 113-118.
  48. Marc Henry, Jean-Pierre Gerbaulet, "A scientific rationale for consciousness", Substantia (2019), 3(2): 37-54.
  49. Marc Henry, « Consciousness, Information, Electromagnetism and Water », Substantia (2020), 4(1): 23-36.
  50. E. T. Jaynes, “Note on thermal heating efficiency”, Am. J. Phys (2003), 71(2): 180-182.
  51. Ilya Prigogine, Gregoire Nicolis, Agnes Babloyantz, "Thermodynamics of evolution", Physics Today (1972), 25(11): 23-28.
  52. Malcom W. Chase Jr., “NIST-JANAF Thermochemical Tables”, Fourth Edition, Monograph n°9, J. Phys. Chem. Ref. Data (1998), (https://janaf.nist.gov/).
  53. Richard A. Robie, Bruce S. Hemingway, “Thermodynamic Properties of Minerals and Realted Substances at 298.15 K and 1 Bar (105 Pascals) Pressure and Higher Temperatures”, U.S. Geological Survey (1998), Denver, Bulletin 2131.
  54. David A. Armstrong, Robert E. Huie, Willem H. Koppenol, Sergei V. Lymar, Ga?bor Mere?nyi, Pedatsur Neta, Branko Ruscia, David M. Stanbury, Steen Steenken, Peter Wardman, “Standard electrode potentials involving radicals in aqueous solution: inorganic radicals (IUPAC Technical Report)”, Pure Appl. Chem. (2015) 87: 1139-1150.
  55. Robert A. Alberty, “Thermodynamics of the hydrolysis of adenosine triphosphate”, J. Chem. Educ. (1969), 46: 713-719.
  56. R. Sander, “Compilation of Henry’s law constants (version 4.0) for water as solvent”, Atmos. Chem. Phys. (2015), 15: 4399–4981.
  57. T. P. Straatsma, H. J. C. Berendsen, “Free energy of ionic hydration: Analysis of a thermodynamic integration technique to evaluate free energy differences by molecular dynamics simulations”, J. Chem. Phys. (1988), 89(9): 5876-5886.
  58. Laurent Schwartz, Anne Devin, Frédéric Bouillaud, Marc Henry, "Entropy as the driving force of pathogenesis: an attempt of classification of the diseases based on the laws of physics", Substantia, doi: 10.13128/Substantia-865.
  59. Jean-Pierre Gerbaulet, Marc Henry, "The ‘Consciousness- Brain’ relationship", Substantia (2019), 3(1): 113-118.
  60. Marc Henry, Jean-Pierre Gerbaulet, "A scientific rationale for consciousness", Substantia (2019), 3(2): 37-54.
  61. Timothy H. Boyer, "Blackbody radiation spectrum from the equivalence principle in classical physics with classical electromagnetic zero-point radiation", Phys. Rev. D (1984), 29(6), 1096-1098.
  62. Marc Henry, « Super-saturated Chemistry », Inference Int. Rev. Sci. (2016), 2[4], https://inference-review.com/article/super-saturated-chemistry.
  63. Timothy H. Boyer, "Blackbody radiation and the scaling symmetry of relativistic classical electron theory with classical electromagnetic zero-point radiation”, Found. Phys. (2010), 40: 1102-1116.
  64. Timothy H. Boyer, "The blackbody radiation spectrum follows from zero-point radiation and the structure of relativistic spacetime in classical physics”, Found. Phys. (2012), 42: 595-614.
  65. Pieter Thyssen, Arnoult Ceulemans, “Particulate symmetries: group theory of the periodic system”, Substantia (2020), 4(1): 4-22.
  66. Marc Henry, “The state of water in living systems: from the liquid to the jellyfish”, Cell. Mol. Biol. (2005), 51: 677702.
  67. Marc Henry, « The topological and quantum structure of zoemorphic water », in Aqua Incognita: Why Ice Floats on Water and Galileo 400 Years on, P. Lo Nostro & B. W. Ninham Eds, Connor Court Pub., Ballarat (2014), chap IX, 197-239.
  68. Marc Henry, “L’Eau et la Physique Quantique” (2016), Éditions Dangles, Escalquens, France. EAN 978-2-7033-1147-8
  69. Marc Henry, “L'Eau morphogénique - Santé - Information et champs de conscience” (2020), Éditions Dangles, Escalquens, France. ISBN 978-2703312697.
  70. Pollack, G. H. (2013) : « The Fourth Phase of Water - Beyond solid, liquid and vapor », Ebner and Sons, Seattle, USA.